Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linindsv Structured version   Visualization version   GIF version

Theorem linindsv 47591
Description: The classes of the module and its linearly independent subsets are sets. (Contributed by AV, 13-Apr-2019.)
Assertion
Ref Expression
linindsv (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V))

Proof of Theorem linindsv
StepHypRef Expression
1 rellininds 47589 . 2 Rel linIndS
21brrelex12i 5737 1 (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  Vcvv 3473   class class class wbr 5152   linIndS clininds 47586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-lininds 47588
This theorem is referenced by:  linindsi  47593
  Copyright terms: Public domain W3C validator