MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsn2 Structured version   Visualization version   GIF version

Theorem relsn2 6173
Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsn2 (𝐴𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅))

Proof of Theorem relsn2
StepHypRef Expression
1 relsng 5755 . 2 (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
2 dmsnn0 6168 . 2 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
31, 2bitrdi 287 1 (𝐴𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2925  Vcvv 3444  c0 4292  {csn 4585   × cxp 5629  dom cdm 5631  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator