MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsn2 Structured version   Visualization version   GIF version

Theorem relsn2 6212
Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsn2 (𝐴𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅))

Proof of Theorem relsn2
StepHypRef Expression
1 relsng 5802 . 2 (𝐴𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
2 dmsnn0 6207 . 2 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
31, 2bitrdi 287 1 (𝐴𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107  wne 2941  Vcvv 3475  c0 4323  {csn 4629   × cxp 5675  dom cdm 5677  Rel wrel 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-dm 5687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator