![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relsn2 | Structured version Visualization version GIF version |
Description: A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.) Make hypothesis an antecedent. (Revised by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
relsn2 | ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsng 5802 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) | |
2 | dmsnn0 6207 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) | |
3 | 1, 2 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ∅c0 4323 {csn 4629 × cxp 5675 dom cdm 5677 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-dm 5687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |