Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrelv | Structured version Visualization version GIF version |
Description: The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022.) |
Ref | Expression |
---|---|
nrelv | ⊢ ¬ Rel V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5175 | . . 3 ⊢ ∅ ∈ V | |
2 | 0nelxp 5559 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
3 | nelss 3940 | . . 3 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ (V × V)) → ¬ V ⊆ (V × V)) | |
4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ ¬ V ⊆ (V × V) |
5 | df-rel 5532 | . 2 ⊢ (Rel V ↔ V ⊆ (V × V)) | |
6 | 4, 5 | mtbir 326 | 1 ⊢ ¬ Rel V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2114 Vcvv 3398 ⊆ wss 3843 ∅c0 4211 × cxp 5523 Rel wrel 5530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-opab 5093 df-xp 5531 df-rel 5532 |
This theorem is referenced by: nfunv 6372 relintabex 40734 |
Copyright terms: Public domain | W3C validator |