| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrelv | Structured version Visualization version GIF version | ||
| Description: The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022.) |
| Ref | Expression |
|---|---|
| nrelv | ⊢ ¬ Rel V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 0nelxp 5645 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 3 | nelss 3995 | . . 3 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ (V × V)) → ¬ V ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ ¬ V ⊆ (V × V) |
| 5 | df-rel 5618 | . 2 ⊢ (Rel V ↔ V ⊆ (V × V)) | |
| 6 | 4, 5 | mtbir 323 | 1 ⊢ ¬ Rel V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 × cxp 5609 Rel wrel 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 df-xp 5617 df-rel 5618 |
| This theorem is referenced by: nfunv 6509 relintabex 43614 |
| Copyright terms: Public domain | W3C validator |