![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrelv | Structured version Visualization version GIF version |
Description: The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022.) |
Ref | Expression |
---|---|
nrelv | ⊢ ¬ Rel V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
2 | 0nelxp 5734 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
3 | nelss 4074 | . . 3 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ (V × V)) → ¬ V ⊆ (V × V)) | |
4 | 1, 2, 3 | mp2an 691 | . 2 ⊢ ¬ V ⊆ (V × V) |
5 | df-rel 5707 | . 2 ⊢ (Rel V ↔ V ⊆ (V × V)) | |
6 | 4, 5 | mtbir 323 | 1 ⊢ ¬ Rel V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: nfunv 6611 relintabex 43543 |
Copyright terms: Public domain | W3C validator |