| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrelv | Structured version Visualization version GIF version | ||
| Description: The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022.) |
| Ref | Expression |
|---|---|
| nrelv | ⊢ ¬ Rel V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5287 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 0nelxp 5699 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 3 | nelss 4029 | . . 3 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ (V × V)) → ¬ V ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ ¬ V ⊆ (V × V) |
| 5 | df-rel 5672 | . 2 ⊢ (Rel V ↔ V ⊆ (V × V)) | |
| 6 | 4, 5 | mtbir 323 | 1 ⊢ ¬ Rel V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ∅c0 4313 × cxp 5663 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: nfunv 6579 relintabex 43556 |
| Copyright terms: Public domain | W3C validator |