| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrelv | Structured version Visualization version GIF version | ||
| Description: The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022.) |
| Ref | Expression |
|---|---|
| nrelv | ⊢ ¬ Rel V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 0nelxp 5675 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 3 | nelss 4015 | . . 3 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ (V × V)) → ¬ V ⊆ (V × V)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ ¬ V ⊆ (V × V) |
| 5 | df-rel 5648 | . 2 ⊢ (Rel V ↔ V ⊆ (V × V)) | |
| 6 | 4, 5 | mtbir 323 | 1 ⊢ ¬ Rel V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 × cxp 5639 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: nfunv 6552 relintabex 43577 |
| Copyright terms: Public domain | W3C validator |