| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relsnb | Structured version Visualization version GIF version | ||
| Description: An at-most-singleton is a relation iff it is empty (because it is a "singleton on a proper class") or it is a singleton of an ordered pair. (Contributed by BJ, 26-Feb-2023.) |
| Ref | Expression |
|---|---|
| relsnb | ⊢ (Rel {𝐴} ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsng 5740 | . . . 4 ⊢ (𝐴 ∈ V → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) | |
| 2 | 1 | biimpcd 249 | . . 3 ⊢ (Rel {𝐴} → (𝐴 ∈ V → 𝐴 ∈ (V × V))) |
| 3 | imor 853 | . . 3 ⊢ ((𝐴 ∈ V → 𝐴 ∈ (V × V)) ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V))) | |
| 4 | 2, 3 | sylib 218 | . 2 ⊢ (Rel {𝐴} → (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V))) |
| 5 | snprc 4667 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 6 | rel0 5738 | . . . . 5 ⊢ Rel ∅ | |
| 7 | releq 5716 | . . . . 5 ⊢ ({𝐴} = ∅ → (Rel {𝐴} ↔ Rel ∅)) | |
| 8 | 6, 7 | mpbiri 258 | . . . 4 ⊢ ({𝐴} = ∅ → Rel {𝐴}) |
| 9 | 5, 8 | sylbi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → Rel {𝐴}) |
| 10 | relsng 5740 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) | |
| 11 | 10 | ibir 268 | . . 3 ⊢ (𝐴 ∈ (V × V) → Rel {𝐴}) |
| 12 | 9, 11 | jaoi 857 | . 2 ⊢ ((¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V)) → Rel {𝐴}) |
| 13 | 4, 12 | impbii 209 | 1 ⊢ (Rel {𝐴} ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 {csn 4573 × cxp 5612 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 df-sn 4574 df-rel 5621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |