MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsnb Structured version   Visualization version   GIF version

Theorem relsnb 5639
Description: An at-most-singleton is a relation iff it is empty (because it is a "singleton on a proper class") or it is a singleton of an ordered pair. (Contributed by BJ, 26-Feb-2023.)
Assertion
Ref Expression
relsnb (Rel {𝐴} ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V)))

Proof of Theorem relsnb
StepHypRef Expression
1 relsng 5638 . . . 4 (𝐴 ∈ V → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
21biimpcd 252 . . 3 (Rel {𝐴} → (𝐴 ∈ V → 𝐴 ∈ (V × V)))
3 imor 850 . . 3 ((𝐴 ∈ V → 𝐴 ∈ (V × V)) ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V)))
42, 3sylib 221 . 2 (Rel {𝐴} → (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V)))
5 snprc 4613 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
6 rel0 5636 . . . . 5 Rel ∅
7 releq 5615 . . . . 5 ({𝐴} = ∅ → (Rel {𝐴} ↔ Rel ∅))
86, 7mpbiri 261 . . . 4 ({𝐴} = ∅ → Rel {𝐴})
95, 8sylbi 220 . . 3 𝐴 ∈ V → Rel {𝐴})
10 relsng 5638 . . . 4 (𝐴 ∈ (V × V) → (Rel {𝐴} ↔ 𝐴 ∈ (V × V)))
1110ibir 271 . . 3 (𝐴 ∈ (V × V) → Rel {𝐴})
129, 11jaoi 854 . 2 ((¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V)) → Rel {𝐴})
134, 12impbii 212 1 (Rel {𝐴} ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wo 844   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243  {csn 4525   × cxp 5517  Rel wrel 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-dif 3884  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-rel 5526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator