Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relsnb | Structured version Visualization version GIF version |
Description: An at-most-singleton is a relation iff it is empty (because it is a "singleton on a proper class") or it is a singleton of an ordered pair. (Contributed by BJ, 26-Feb-2023.) |
Ref | Expression |
---|---|
relsnb | ⊢ (Rel {𝐴} ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsng 5708 | . . . 4 ⊢ (𝐴 ∈ V → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) | |
2 | 1 | biimpcd 248 | . . 3 ⊢ (Rel {𝐴} → (𝐴 ∈ V → 𝐴 ∈ (V × V))) |
3 | imor 849 | . . 3 ⊢ ((𝐴 ∈ V → 𝐴 ∈ (V × V)) ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V))) | |
4 | 2, 3 | sylib 217 | . 2 ⊢ (Rel {𝐴} → (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V))) |
5 | snprc 4658 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
6 | rel0 5706 | . . . . 5 ⊢ Rel ∅ | |
7 | releq 5685 | . . . . 5 ⊢ ({𝐴} = ∅ → (Rel {𝐴} ↔ Rel ∅)) | |
8 | 6, 7 | mpbiri 257 | . . . 4 ⊢ ({𝐴} = ∅ → Rel {𝐴}) |
9 | 5, 8 | sylbi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → Rel {𝐴}) |
10 | relsng 5708 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (Rel {𝐴} ↔ 𝐴 ∈ (V × V))) | |
11 | 10 | ibir 267 | . . 3 ⊢ (𝐴 ∈ (V × V) → Rel {𝐴}) |
12 | 9, 11 | jaoi 853 | . 2 ⊢ ((¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V)) → Rel {𝐴}) |
13 | 4, 12 | impbii 208 | 1 ⊢ (Rel {𝐴} ↔ (¬ 𝐴 ∈ V ∨ 𝐴 ∈ (V × V))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 {csn 4566 × cxp 5586 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-rel 5595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |