| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relssr | Structured version Visualization version GIF version | ||
| Description: The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| Ref | Expression |
|---|---|
| relssr | ⊢ Rel S |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ssr 38477 | . 2 ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | |
| 2 | 1 | relopabiv 5767 | 1 ⊢ Rel S |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 Rel wrel 5628 S cssr 38160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-opab 5158 df-xp 5629 df-rel 5630 df-ssr 38477 |
| This theorem is referenced by: brssr 38480 issetssr 38482 brcnvssr 38485 extssr 38488 |
| Copyright terms: Public domain | W3C validator |