Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relssr Structured version   Visualization version   GIF version

Theorem relssr 38537
Description: The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
relssr Rel S

Proof of Theorem relssr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssr 38535 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5755 1 Rel S
Colors of variables: wff setvar class
Syntax hints:  wss 3897  Rel wrel 5616   S cssr 38218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5149  df-xp 5617  df-rel 5618  df-ssr 38535
This theorem is referenced by:  brssr  38538  issetssr  38540  brcnvssr  38543  extssr  38546
  Copyright terms: Public domain W3C validator