Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relssr Structured version   Visualization version   GIF version

Theorem relssr 36597
Description: The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
relssr Rel S

Proof of Theorem relssr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssr 36595 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5727 1 Rel S
Colors of variables: wff setvar class
Syntax hints:  wss 3891  Rel wrel 5593   S cssr 36315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-opab 5141  df-xp 5594  df-rel 5595  df-ssr 36595
This theorem is referenced by:  brssr  36598  issetssr  36600  brcnvssr  36603  extssr  36606
  Copyright terms: Public domain W3C validator