Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relssr | Structured version Visualization version GIF version |
Description: The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.) |
Ref | Expression |
---|---|
relssr | ⊢ Rel S |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ssr 36595 | . 2 ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | |
2 | 1 | relopabiv 5727 | 1 ⊢ Rel S |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3891 Rel wrel 5593 S cssr 36315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-opab 5141 df-xp 5594 df-rel 5595 df-ssr 36595 |
This theorem is referenced by: brssr 36598 issetssr 36600 brcnvssr 36603 extssr 36606 |
Copyright terms: Public domain | W3C validator |