Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relssr Structured version   Visualization version   GIF version

Theorem relssr 37972
Description: The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
relssr Rel S

Proof of Theorem relssr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssr 37970 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5822 1 Rel S
Colors of variables: wff setvar class
Syntax hints:  wss 3947  Rel wrel 5683   S cssr 37651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-in 3954  df-ss 3964  df-opab 5211  df-xp 5684  df-rel 5685  df-ssr 37970
This theorem is referenced by:  brssr  37973  issetssr  37975  brcnvssr  37978  extssr  37981
  Copyright terms: Public domain W3C validator