Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relssr Structured version   Visualization version   GIF version

Theorem relssr 35897
 Description: The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
relssr Rel S

Proof of Theorem relssr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssr 35895 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabi 5658 1 Rel S
 Colors of variables: wff setvar class Syntax hints:   ⊆ wss 3881  Rel wrel 5524   S cssr 35613 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5093  df-xp 5525  df-rel 5526  df-ssr 35895 This theorem is referenced by:  brssr  35898  issetssr  35900  brcnvssr  35903  extssr  35906
 Copyright terms: Public domain W3C validator