Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relssr Structured version   Visualization version   GIF version

Theorem relssr 36714
Description: The subset relation is a relation. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
relssr Rel S

Proof of Theorem relssr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ssr 36712 . 2 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
21relopabiv 5742 1 Rel S
Colors of variables: wff setvar class
Syntax hints:  wss 3892  Rel wrel 5605   S cssr 36384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-in 3899  df-ss 3909  df-opab 5144  df-xp 5606  df-rel 5607  df-ssr 36712
This theorem is referenced by:  brssr  36715  issetssr  36717  brcnvssr  36720  extssr  36723
  Copyright terms: Public domain W3C validator