| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issetssr | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| Ref | Expression |
|---|---|
| issetssr | ⊢ (𝐴 ∈ V ↔ 𝐴 S 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brssrid 38667 | . 2 ⊢ (𝐴 ∈ V → 𝐴 S 𝐴) | |
| 2 | relssr 38665 | . . 3 ⊢ Rel S | |
| 3 | 2 | brrelex1i 5677 | . 2 ⊢ (𝐴 S 𝐴 → 𝐴 ∈ V) |
| 4 | 1, 3 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 S 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 class class class wbr 5095 S cssr 38298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-ssr 38663 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |