Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issetssr Structured version   Visualization version   GIF version

Theorem issetssr 38540
Description: Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
issetssr (𝐴 ∈ V ↔ 𝐴 S 𝐴)

Proof of Theorem issetssr
StepHypRef Expression
1 brssrid 38539 . 2 (𝐴 ∈ V → 𝐴 S 𝐴)
2 relssr 38537 . . 3 Rel S
32brrelex1i 5667 . 2 (𝐴 S 𝐴𝐴 ∈ V)
41, 3impbii 209 1 (𝐴 ∈ V ↔ 𝐴 S 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  Vcvv 3436   class class class wbr 5086   S cssr 38218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-ssr 38535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator