Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issetssr Structured version   Visualization version   GIF version

Theorem issetssr 38467
Description: Two ways of expressing set existence. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
issetssr (𝐴 ∈ V ↔ 𝐴 S 𝐴)

Proof of Theorem issetssr
StepHypRef Expression
1 brssrid 38466 . 2 (𝐴 ∈ V → 𝐴 S 𝐴)
2 relssr 38464 . . 3 Rel S
32brrelex1i 5687 . 2 (𝐴 S 𝐴𝐴 ∈ V)
41, 3impbii 209 1 (𝐴 ∈ V ↔ 𝐴 S 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Vcvv 3444   class class class wbr 5102   S cssr 38145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-ssr 38462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator