Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brssr Structured version   Visualization version   GIF version

Theorem brssr 38613
Description: The subset relation and subclass relationship (df-ss 3915) are the same, that is, (𝐴 S 𝐵𝐴𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.)
Assertion
Ref Expression
brssr (𝐵𝑉 → (𝐴 S 𝐵𝐴𝐵))

Proof of Theorem brssr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relssr 38612 . . . . 5 Rel S
21brrelex1i 5675 . . . 4 (𝐴 S 𝐵𝐴 ∈ V)
32adantl 481 . . 3 ((𝐵𝑉𝐴 S 𝐵) → 𝐴 ∈ V)
4 simpl 482 . . 3 ((𝐵𝑉𝐴 S 𝐵) → 𝐵𝑉)
53, 4jca 511 . 2 ((𝐵𝑉𝐴 S 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
6 ssexg 5263 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
7 simpr 484 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐵𝑉)
86, 7jca 511 . . 3 ((𝐴𝐵𝐵𝑉) → (𝐴 ∈ V ∧ 𝐵𝑉))
98ancoms 458 . 2 ((𝐵𝑉𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
10 sseq1 3956 . . 3 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
11 sseq2 3957 . . 3 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
12 df-ssr 38610 . . 3 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1310, 11, 12brabg 5482 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 S 𝐵𝐴𝐵))
145, 9, 13pm5.21nd 801 1 (𝐵𝑉 → (𝐴 S 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  Vcvv 3437  wss 3898   class class class wbr 5093   S cssr 38245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-ssr 38610
This theorem is referenced by:  brssrid  38614  brssrres  38616  brcnvssr  38618  extssr  38621  dfrefrels2  38625  dfsymrels2  38657  dftrrels2  38691
  Copyright terms: Public domain W3C validator