![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brssr | Structured version Visualization version GIF version |
Description: The subset relation and subclass relationship (df-ss 3993) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
Ref | Expression |
---|---|
brssr | ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssr 38456 | . . . . 5 ⊢ Rel S | |
2 | 1 | brrelex1i 5756 | . . . 4 ⊢ (𝐴 S 𝐵 → 𝐴 ∈ V) |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → 𝐴 ∈ V) |
4 | simpl 482 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → 𝐵 ∈ 𝑉) | |
5 | 3, 4 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
6 | ssexg 5341 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
7 | simpr 484 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
8 | 6, 7 | jca 511 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
9 | 8 | ancoms 458 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
10 | sseq1 4034 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) | |
11 | sseq2 4035 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
12 | df-ssr 38454 | . . 3 ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | |
13 | 10, 11, 12 | brabg 5558 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
14 | 5, 9, 13 | pm5.21nd 801 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 S cssr 38138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-ssr 38454 |
This theorem is referenced by: brssrid 38458 brssrres 38460 brcnvssr 38462 extssr 38465 dfrefrels2 38469 dfsymrels2 38501 dftrrels2 38531 |
Copyright terms: Public domain | W3C validator |