Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brssr Structured version   Visualization version   GIF version

Theorem brssr 36619
Description: The subset relation and subclass relationship (df-ss 3904) are the same, that is, (𝐴 S 𝐵𝐴𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.)
Assertion
Ref Expression
brssr (𝐵𝑉 → (𝐴 S 𝐵𝐴𝐵))

Proof of Theorem brssr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relssr 36618 . . . . 5 Rel S
21brrelex1i 5643 . . . 4 (𝐴 S 𝐵𝐴 ∈ V)
32adantl 482 . . 3 ((𝐵𝑉𝐴 S 𝐵) → 𝐴 ∈ V)
4 simpl 483 . . 3 ((𝐵𝑉𝐴 S 𝐵) → 𝐵𝑉)
53, 4jca 512 . 2 ((𝐵𝑉𝐴 S 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
6 ssexg 5247 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
7 simpr 485 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐵𝑉)
86, 7jca 512 . . 3 ((𝐴𝐵𝐵𝑉) → (𝐴 ∈ V ∧ 𝐵𝑉))
98ancoms 459 . 2 ((𝐵𝑉𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
10 sseq1 3946 . . 3 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
11 sseq2 3947 . . 3 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
12 df-ssr 36616 . . 3 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1310, 11, 12brabg 5452 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 S 𝐵𝐴𝐵))
145, 9, 13pm5.21nd 799 1 (𝐵𝑉 → (𝐴 S 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074   S cssr 36336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-ssr 36616
This theorem is referenced by:  brssrid  36620  brssrres  36622  brcnvssr  36624  extssr  36627  dfrefrels2  36631  dfsymrels2  36659  dftrrels2  36689
  Copyright terms: Public domain W3C validator