Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brssr Structured version   Visualization version   GIF version

Theorem brssr 38457
Description: The subset relation and subclass relationship (df-ss 3993) are the same, that is, (𝐴 S 𝐵𝐴𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.)
Assertion
Ref Expression
brssr (𝐵𝑉 → (𝐴 S 𝐵𝐴𝐵))

Proof of Theorem brssr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relssr 38456 . . . . 5 Rel S
21brrelex1i 5756 . . . 4 (𝐴 S 𝐵𝐴 ∈ V)
32adantl 481 . . 3 ((𝐵𝑉𝐴 S 𝐵) → 𝐴 ∈ V)
4 simpl 482 . . 3 ((𝐵𝑉𝐴 S 𝐵) → 𝐵𝑉)
53, 4jca 511 . 2 ((𝐵𝑉𝐴 S 𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
6 ssexg 5341 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
7 simpr 484 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐵𝑉)
86, 7jca 511 . . 3 ((𝐴𝐵𝐵𝑉) → (𝐴 ∈ V ∧ 𝐵𝑉))
98ancoms 458 . 2 ((𝐵𝑉𝐴𝐵) → (𝐴 ∈ V ∧ 𝐵𝑉))
10 sseq1 4034 . . 3 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
11 sseq2 4035 . . 3 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
12 df-ssr 38454 . . 3 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
1310, 11, 12brabg 5558 . 2 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴 S 𝐵𝐴𝐵))
145, 9, 13pm5.21nd 801 1 (𝐵𝑉 → (𝐴 S 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166   S cssr 38138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-ssr 38454
This theorem is referenced by:  brssrid  38458  brssrres  38460  brcnvssr  38462  extssr  38465  dfrefrels2  38469  dfsymrels2  38501  dftrrels2  38531
  Copyright terms: Public domain W3C validator