Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brssr | Structured version Visualization version GIF version |
Description: The subset relation and subclass relationship (df-ss 3904) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
Ref | Expression |
---|---|
brssr | ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssr 36618 | . . . . 5 ⊢ Rel S | |
2 | 1 | brrelex1i 5643 | . . . 4 ⊢ (𝐴 S 𝐵 → 𝐴 ∈ V) |
3 | 2 | adantl 482 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → 𝐴 ∈ V) |
4 | simpl 483 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → 𝐵 ∈ 𝑉) | |
5 | 3, 4 | jca 512 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
6 | ssexg 5247 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
7 | simpr 485 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
8 | 6, 7 | jca 512 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
9 | 8 | ancoms 459 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
10 | sseq1 3946 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) | |
11 | sseq2 3947 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
12 | df-ssr 36616 | . . 3 ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} | |
13 | 10, 11, 12 | brabg 5452 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
14 | 5, 9, 13 | pm5.21nd 799 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 S cssr 36336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-ssr 36616 |
This theorem is referenced by: brssrid 36620 brssrres 36622 brcnvssr 36624 extssr 36627 dfrefrels2 36631 dfsymrels2 36659 dftrrels2 36689 |
Copyright terms: Public domain | W3C validator |