![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brssr | Structured version Visualization version GIF version |
Description: The subset relation and subclass relationship (df-ss 3958) are the same, that is, (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵) when 𝐵 is a set. (Contributed by Peter Mazsa, 31-Jul-2019.) |
Ref | Expression |
---|---|
brssr | ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssr 37873 | . . . . 5 ⊢ Rel S | |
2 | 1 | brrelex1i 5723 | . . . 4 ⊢ (𝐴 S 𝐵 → 𝐴 ∈ V) |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → 𝐴 ∈ V) |
4 | simpl 482 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → 𝐵 ∈ 𝑉) | |
5 | 3, 4 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
6 | ssexg 5314 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
7 | simpr 484 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
8 | 6, 7 | jca 511 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
9 | 8 | ancoms 458 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ 𝑉)) |
10 | sseq1 4000 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) | |
11 | sseq2 4001 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
12 | df-ssr 37871 | . . 3 ⊢ S = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ⊆ 𝑦} | |
13 | 10, 11, 12 | brabg 5530 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
14 | 5, 9, 13 | pm5.21nd 799 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3941 class class class wbr 5139 S cssr 37549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-ssr 37871 |
This theorem is referenced by: brssrid 37875 brssrres 37877 brcnvssr 37879 extssr 37882 dfrefrels2 37886 dfsymrels2 37918 dftrrels2 37948 |
Copyright terms: Public domain | W3C validator |