Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ren0 Structured version   Visualization version   GIF version

Theorem ren0 42896
Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
ren0 ℝ ≠ ∅

Proof of Theorem ren0
StepHypRef Expression
1 0re 10961 . 2 0 ∈ ℝ
21ne0ii 4276 1 ℝ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2944  c0 4261  cr 10854  0cc0 10855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-1cn 10913  ax-addrcl 10916  ax-rnegex 10926  ax-cnre 10928
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-dif 3894  df-nul 4262
This theorem is referenced by:  limsup0  43189  limsuppnfdlem  43196  limsup10ex  43268  liminf10ex  43269
  Copyright terms: Public domain W3C validator