![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ren0 | Structured version Visualization version GIF version |
Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ren0 | ⊢ ℝ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | ne0ii 4367 | 1 ⊢ ℝ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 ∅c0 4352 ℝcr 11183 0cc0 11184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rex 3077 df-dif 3979 df-nul 4353 |
This theorem is referenced by: limsup0 45615 limsuppnfdlem 45622 limsup10ex 45694 liminf10ex 45695 |
Copyright terms: Public domain | W3C validator |