Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ren0 | Structured version Visualization version GIF version |
Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ren0 | ⊢ ℝ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10961 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | ne0ii 4276 | 1 ⊢ ℝ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2944 ∅c0 4261 ℝcr 10854 0cc0 10855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-1cn 10913 ax-addrcl 10916 ax-rnegex 10926 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-dif 3894 df-nul 4262 |
This theorem is referenced by: limsup0 43189 limsuppnfdlem 43196 limsup10ex 43268 liminf10ex 43269 |
Copyright terms: Public domain | W3C validator |