Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ren0 Structured version   Visualization version   GIF version

Theorem ren0 45440
Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
ren0 ℝ ≠ ∅

Proof of Theorem ren0
StepHypRef Expression
1 0re 11109 . 2 0 ∈ ℝ
21ne0ii 4289 1 ℝ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2928  c0 4278  cr 11000  0cc0 11001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-1cn 11059  ax-addrcl 11062  ax-rnegex 11072  ax-cnre 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rex 3057  df-dif 3900  df-nul 4279
This theorem is referenced by:  limsup0  45732  limsuppnfdlem  45739  limsup10ex  45811  liminf10ex  45812
  Copyright terms: Public domain W3C validator