Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ren0 Structured version   Visualization version   GIF version

Theorem ren0 45352
Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
ren0 ℝ ≠ ∅

Proof of Theorem ren0
StepHypRef Expression
1 0re 11261 . 2 0 ∈ ℝ
21ne0ii 4350 1 ℝ ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wne 2938  c0 4339  cr 11152  0cc0 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-1cn 11211  ax-addrcl 11214  ax-rnegex 11224  ax-cnre 11226
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rex 3069  df-dif 3966  df-nul 4340
This theorem is referenced by:  limsup0  45650  limsuppnfdlem  45657  limsup10ex  45729  liminf10ex  45730
  Copyright terms: Public domain W3C validator