| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ren0 | Structured version Visualization version GIF version | ||
| Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ren0 | ⊢ ℝ ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11109 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | ne0ii 4289 | 1 ⊢ ℝ ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∅c0 4278 ℝcr 11000 0cc0 11001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11059 ax-addrcl 11062 ax-rnegex 11072 ax-cnre 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rex 3057 df-dif 3900 df-nul 4279 |
| This theorem is referenced by: limsup0 45732 limsuppnfdlem 45739 limsup10ex 45811 liminf10ex 45812 |
| Copyright terms: Public domain | W3C validator |