![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ren0 | Structured version Visualization version GIF version |
Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ren0 | ⊢ ℝ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11261 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | ne0ii 4350 | 1 ⊢ ℝ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2938 ∅c0 4339 ℝcr 11152 0cc0 11153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rex 3069 df-dif 3966 df-nul 4340 |
This theorem is referenced by: limsup0 45650 limsuppnfdlem 45657 limsup10ex 45729 liminf10ex 45730 |
Copyright terms: Public domain | W3C validator |