![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ren0 | Structured version Visualization version GIF version |
Description: The set of reals is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ren0 | ⊢ ℝ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10330 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | ne0ii 4124 | 1 ⊢ ℝ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2971 ∅c0 4115 ℝcr 10223 0cc0 10224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 ax-1cn 10282 ax-addrcl 10285 ax-rnegex 10295 ax-cnre 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-v 3387 df-dif 3772 df-nul 4116 |
This theorem is referenced by: limsup0 40670 limsuppnfdlem 40677 limsup10ex 40749 liminf10ex 40750 |
Copyright terms: Public domain | W3C validator |