Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup0 | Structured version Visualization version GIF version |
Description: The superior limit of the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsup0 | ⊢ (lim sup‘∅) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
2 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
3 | 2 | limsupval 15111 | . . 3 ⊢ (∅ ∈ V → (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) |
5 | 0ima 5975 | . . . . . . . . . 10 ⊢ (∅ “ (𝑥[,)+∞)) = ∅ | |
6 | 5 | ineq1i 4139 | . . . . . . . . 9 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = (∅ ∩ ℝ*) |
7 | 0in 4324 | . . . . . . . . 9 ⊢ (∅ ∩ ℝ*) = ∅ | |
8 | 6, 7 | eqtri 2766 | . . . . . . . 8 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = ∅ |
9 | 8 | supeq1i 9136 | . . . . . . 7 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(∅, ℝ*, < ) |
10 | xrsup0 12986 | . . . . . . 7 ⊢ sup(∅, ℝ*, < ) = -∞ | |
11 | 9, 10 | eqtri 2766 | . . . . . 6 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = -∞ |
12 | 11 | mpteq2i 5175 | . . . . 5 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ -∞) |
13 | ren0 42832 | . . . . . 6 ⊢ ℝ ≠ ∅ | |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ ≠ ∅) |
15 | 12, 14 | rnmptc 7064 | . . . 4 ⊢ (⊤ → ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞}) |
16 | 15 | mptru 1546 | . . 3 ⊢ ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞} |
17 | 16 | infeq1i 9167 | . 2 ⊢ inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf({-∞}, ℝ*, < ) |
18 | xrltso 12804 | . . 3 ⊢ < Or ℝ* | |
19 | mnfxr 10963 | . . 3 ⊢ -∞ ∈ ℝ* | |
20 | infsn 9194 | . . 3 ⊢ (( < Or ℝ* ∧ -∞ ∈ ℝ*) → inf({-∞}, ℝ*, < ) = -∞) | |
21 | 18, 19, 20 | mp2an 688 | . 2 ⊢ inf({-∞}, ℝ*, < ) = -∞ |
22 | 4, 17, 21 | 3eqtri 2770 | 1 ⊢ (lim sup‘∅) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∩ cin 3882 ∅c0 4253 {csn 4558 ↦ cmpt 5153 Or wor 5493 ran crn 5581 “ cima 5583 ‘cfv 6418 (class class class)co 7255 supcsup 9129 infcinf 9130 ℝcr 10801 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 [,)cico 13010 lim supclsp 15107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-limsup 15108 |
This theorem is referenced by: climlimsupcex 43200 liminf0 43224 liminflelimsupcex 43228 |
Copyright terms: Public domain | W3C validator |