![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup0 | Structured version Visualization version GIF version |
Description: The superior limit of the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsup0 | ⊢ (lim sup‘∅) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
2 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
3 | 2 | limsupval 15425 | . . 3 ⊢ (∅ ∈ V → (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) |
5 | 0ima 6077 | . . . . . . . . . 10 ⊢ (∅ “ (𝑥[,)+∞)) = ∅ | |
6 | 5 | ineq1i 4208 | . . . . . . . . 9 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = (∅ ∩ ℝ*) |
7 | 0in 4393 | . . . . . . . . 9 ⊢ (∅ ∩ ℝ*) = ∅ | |
8 | 6, 7 | eqtri 2759 | . . . . . . . 8 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = ∅ |
9 | 8 | supeq1i 9448 | . . . . . . 7 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(∅, ℝ*, < ) |
10 | xrsup0 13309 | . . . . . . 7 ⊢ sup(∅, ℝ*, < ) = -∞ | |
11 | 9, 10 | eqtri 2759 | . . . . . 6 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = -∞ |
12 | 11 | mpteq2i 5253 | . . . . 5 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ -∞) |
13 | ren0 44574 | . . . . . 6 ⊢ ℝ ≠ ∅ | |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ ≠ ∅) |
15 | 12, 14 | rnmptc 7210 | . . . 4 ⊢ (⊤ → ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞}) |
16 | 15 | mptru 1547 | . . 3 ⊢ ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞} |
17 | 16 | infeq1i 9479 | . 2 ⊢ inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf({-∞}, ℝ*, < ) |
18 | xrltso 13127 | . . 3 ⊢ < Or ℝ* | |
19 | mnfxr 11278 | . . 3 ⊢ -∞ ∈ ℝ* | |
20 | infsn 9506 | . . 3 ⊢ (( < Or ℝ* ∧ -∞ ∈ ℝ*) → inf({-∞}, ℝ*, < ) = -∞) | |
21 | 18, 19, 20 | mp2an 689 | . 2 ⊢ inf({-∞}, ℝ*, < ) = -∞ |
22 | 4, 17, 21 | 3eqtri 2763 | 1 ⊢ (lim sup‘∅) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∩ cin 3947 ∅c0 4322 {csn 4628 ↦ cmpt 5231 Or wor 5587 ran crn 5677 “ cima 5679 ‘cfv 6543 (class class class)co 7412 supcsup 9441 infcinf 9442 ℝcr 11115 +∞cpnf 11252 -∞cmnf 11253 ℝ*cxr 11254 < clt 11255 [,)cico 13333 lim supclsp 15421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-limsup 15422 |
This theorem is referenced by: climlimsupcex 44947 liminf0 44971 liminflelimsupcex 44975 |
Copyright terms: Public domain | W3C validator |