![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup0 | Structured version Visualization version GIF version |
Description: The superior limit of the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
limsup0 | ⊢ (lim sup‘∅) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
2 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
3 | 2 | limsupval 15520 | . . 3 ⊢ (∅ ∈ V → (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) |
5 | 0ima 6107 | . . . . . . . . . 10 ⊢ (∅ “ (𝑥[,)+∞)) = ∅ | |
6 | 5 | ineq1i 4237 | . . . . . . . . 9 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = (∅ ∩ ℝ*) |
7 | 0in 4420 | . . . . . . . . 9 ⊢ (∅ ∩ ℝ*) = ∅ | |
8 | 6, 7 | eqtri 2768 | . . . . . . . 8 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = ∅ |
9 | 8 | supeq1i 9516 | . . . . . . 7 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(∅, ℝ*, < ) |
10 | xrsup0 13385 | . . . . . . 7 ⊢ sup(∅, ℝ*, < ) = -∞ | |
11 | 9, 10 | eqtri 2768 | . . . . . 6 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = -∞ |
12 | 11 | mpteq2i 5271 | . . . . 5 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ -∞) |
13 | ren0 45317 | . . . . . 6 ⊢ ℝ ≠ ∅ | |
14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ ≠ ∅) |
15 | 12, 14 | rnmptc 7244 | . . . 4 ⊢ (⊤ → ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞}) |
16 | 15 | mptru 1544 | . . 3 ⊢ ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞} |
17 | 16 | infeq1i 9547 | . 2 ⊢ inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf({-∞}, ℝ*, < ) |
18 | xrltso 13203 | . . 3 ⊢ < Or ℝ* | |
19 | mnfxr 11347 | . . 3 ⊢ -∞ ∈ ℝ* | |
20 | infsn 9574 | . . 3 ⊢ (( < Or ℝ* ∧ -∞ ∈ ℝ*) → inf({-∞}, ℝ*, < ) = -∞) | |
21 | 18, 19, 20 | mp2an 691 | . 2 ⊢ inf({-∞}, ℝ*, < ) = -∞ |
22 | 4, 17, 21 | 3eqtri 2772 | 1 ⊢ (lim sup‘∅) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∩ cin 3975 ∅c0 4352 {csn 4648 ↦ cmpt 5249 Or wor 5606 ran crn 5701 “ cima 5703 ‘cfv 6573 (class class class)co 7448 supcsup 9509 infcinf 9510 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 [,)cico 13409 lim supclsp 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-limsup 15517 |
This theorem is referenced by: climlimsupcex 45690 liminf0 45714 liminflelimsupcex 45718 |
Copyright terms: Public domain | W3C validator |