Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup0 Structured version   Visualization version   GIF version

Theorem limsup0 45650
Description: The superior limit of the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
limsup0 (lim sup‘∅) = -∞

Proof of Theorem limsup0
StepHypRef Expression
1 0ex 5313 . . 3 ∅ ∈ V
2 eqid 2735 . . . 4 (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ))
32limsupval 15507 . . 3 (∅ ∈ V → (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
41, 3ax-mp 5 . 2 (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
5 0ima 6098 . . . . . . . . . 10 (∅ “ (𝑥[,)+∞)) = ∅
65ineq1i 4224 . . . . . . . . 9 ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = (∅ ∩ ℝ*)
7 0in 4403 . . . . . . . . 9 (∅ ∩ ℝ*) = ∅
86, 7eqtri 2763 . . . . . . . 8 ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = ∅
98supeq1i 9485 . . . . . . 7 sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(∅, ℝ*, < )
10 xrsup0 13362 . . . . . . 7 sup(∅, ℝ*, < ) = -∞
119, 10eqtri 2763 . . . . . 6 sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = -∞
1211mpteq2i 5253 . . . . 5 (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ -∞)
13 ren0 45352 . . . . . 6 ℝ ≠ ∅
1413a1i 11 . . . . 5 (⊤ → ℝ ≠ ∅)
1512, 14rnmptc 7227 . . . 4 (⊤ → ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞})
1615mptru 1544 . . 3 ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞}
1716infeq1i 9516 . 2 inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf({-∞}, ℝ*, < )
18 xrltso 13180 . . 3 < Or ℝ*
19 mnfxr 11316 . . 3 -∞ ∈ ℝ*
20 infsn 9543 . . 3 (( < Or ℝ* ∧ -∞ ∈ ℝ*) → inf({-∞}, ℝ*, < ) = -∞)
2118, 19, 20mp2an 692 . 2 inf({-∞}, ℝ*, < ) = -∞
224, 17, 213eqtri 2767 1 (lim sup‘∅) = -∞
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wtru 1538  wcel 2106  wne 2938  Vcvv 3478  cin 3962  c0 4339  {csn 4631  cmpt 5231   Or wor 5596  ran crn 5690  cima 5692  cfv 6563  (class class class)co 7431  supcsup 9478  infcinf 9479  cr 11152  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  [,)cico 13386  lim supclsp 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-limsup 15504
This theorem is referenced by:  climlimsupcex  45725  liminf0  45749  liminflelimsupcex  45753
  Copyright terms: Public domain W3C validator