| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup0 | Structured version Visualization version GIF version | ||
| Description: The superior limit of the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsup0 | ⊢ (lim sup‘∅) = -∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 3 | 2 | limsupval 15399 | . . 3 ⊢ (∅ ∈ V → (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lim sup‘∅) = inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) |
| 5 | 0ima 6033 | . . . . . . . . . 10 ⊢ (∅ “ (𝑥[,)+∞)) = ∅ | |
| 6 | 5 | ineq1i 4169 | . . . . . . . . 9 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = (∅ ∩ ℝ*) |
| 7 | 0in 4350 | . . . . . . . . 9 ⊢ (∅ ∩ ℝ*) = ∅ | |
| 8 | 6, 7 | eqtri 2752 | . . . . . . . 8 ⊢ ((∅ “ (𝑥[,)+∞)) ∩ ℝ*) = ∅ |
| 9 | 8 | supeq1i 9356 | . . . . . . 7 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup(∅, ℝ*, < ) |
| 10 | xrsup0 13243 | . . . . . . 7 ⊢ sup(∅, ℝ*, < ) = -∞ | |
| 11 | 9, 10 | eqtri 2752 | . . . . . 6 ⊢ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < ) = -∞ |
| 12 | 11 | mpteq2i 5191 | . . . . 5 ⊢ (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑥 ∈ ℝ ↦ -∞) |
| 13 | ren0 45385 | . . . . . 6 ⊢ ℝ ≠ ∅ | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ ≠ ∅) |
| 15 | 12, 14 | rnmptc 7147 | . . . 4 ⊢ (⊤ → ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞}) |
| 16 | 15 | mptru 1547 | . . 3 ⊢ ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )) = {-∞} |
| 17 | 16 | infeq1i 9388 | . 2 ⊢ inf(ran (𝑥 ∈ ℝ ↦ sup(((∅ “ (𝑥[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf({-∞}, ℝ*, < ) |
| 18 | xrltso 13061 | . . 3 ⊢ < Or ℝ* | |
| 19 | mnfxr 11191 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 20 | infsn 9416 | . . 3 ⊢ (( < Or ℝ* ∧ -∞ ∈ ℝ*) → inf({-∞}, ℝ*, < ) = -∞) | |
| 21 | 18, 19, 20 | mp2an 692 | . 2 ⊢ inf({-∞}, ℝ*, < ) = -∞ |
| 22 | 4, 17, 21 | 3eqtri 2756 | 1 ⊢ (lim sup‘∅) = -∞ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∩ cin 3904 ∅c0 4286 {csn 4579 ↦ cmpt 5176 Or wor 5530 ran crn 5624 “ cima 5626 ‘cfv 6486 (class class class)co 7353 supcsup 9349 infcinf 9350 ℝcr 11027 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 [,)cico 13268 lim supclsp 15395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-limsup 15396 |
| This theorem is referenced by: climlimsupcex 45754 liminf0 45778 liminflelimsupcex 45782 |
| Copyright terms: Public domain | W3C validator |