| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminf10ex | Structured version Visualization version GIF version | ||
| Description: The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminf10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
| Ref | Expression |
|---|---|
| liminf10ex | ⊢ (lim inf‘𝐹) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
| 2 | nnex 12131 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
| 4 | liminf10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
| 5 | 0xr 11159 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
| 7 | 1xr 11171 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
| 9 | 6, 8 | ifcld 4519 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
| 10 | 4, 9 | fmpti 7045 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
| 12 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
| 13 | 1, 3, 11, 12 | liminfval5 45811 | . . 3 ⊢ (⊤ → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
| 14 | 13 | mptru 1548 | . 2 ⊢ (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
| 15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
| 16 | 4, 15 | limsup10exlem 45818 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
| 17 | 16 | infeq1d 9362 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = inf({0, 1}, ℝ*, < )) |
| 18 | xrltso 13040 | . . . . . . . . 9 ⊢ < Or ℝ* | |
| 19 | infpr 9389 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1)) | |
| 20 | 18, 5, 7, 19 | mp3an 1463 | . . . . . . . 8 ⊢ inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1) |
| 21 | 0lt1 11639 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 22 | 21 | iftruei 4479 | . . . . . . . 8 ⊢ if(0 < 1, 0, 1) = 0 |
| 23 | 20, 22 | eqtri 2754 | . . . . . . 7 ⊢ inf({0, 1}, ℝ*, < ) = 0 |
| 24 | 17, 23 | eqtrdi 2782 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 0) |
| 25 | 24 | mpteq2ia 5184 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 0) |
| 26 | 25 | rneqi 5876 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 0) |
| 27 | eqid 2731 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 0) = (𝑘 ∈ ℝ ↦ 0) | |
| 28 | ren0 45448 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
| 30 | 27, 29 | rnmptc 7141 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 0) = {0}) |
| 31 | 30 | mptru 1548 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 0) = {0} |
| 32 | 26, 31 | eqtri 2754 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {0} |
| 33 | 32 | supeq1i 9331 | . 2 ⊢ sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = sup({0}, ℝ*, < ) |
| 34 | supsn 9357 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 35 | 18, 5, 34 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 36 | 14, 33, 35 | 3eqtri 2758 | 1 ⊢ (lim inf‘𝐹) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4280 ifcif 4472 {csn 4573 {cpr 4575 class class class wbr 5089 ↦ cmpt 5170 Or wor 5521 ran crn 5615 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 supcsup 9324 infcinf 9325 ℝcr 11005 0cc0 11006 1c1 11007 +∞cpnf 11143 ℝ*cxr 11145 < clt 11146 ℕcn 12125 2c2 12180 [,)cico 13247 ∥ cdvds 16163 lim infclsi 45797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-fl 13696 df-ceil 13697 df-dvds 16164 df-liminf 45798 |
| This theorem is referenced by: liminfltlimsupex 45827 |
| Copyright terms: Public domain | W3C validator |