Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminf10ex | Structured version Visualization version GIF version |
Description: The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminf10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
Ref | Expression |
---|---|
liminf10ex | ⊢ (lim inf‘𝐹) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
2 | nnex 11979 | . . . . 5 ⊢ ℕ ∈ V | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
4 | liminf10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
5 | 0xr 11022 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
7 | 1xr 11034 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
9 | 6, 8 | ifcld 4505 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
10 | 4, 9 | fmpti 6986 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
12 | eqid 2738 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
13 | 1, 3, 11, 12 | liminfval5 43306 | . . 3 ⊢ (⊤ → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
14 | 13 | mptru 1546 | . 2 ⊢ (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
16 | 4, 15 | limsup10exlem 43313 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
17 | 16 | infeq1d 9236 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = inf({0, 1}, ℝ*, < )) |
18 | xrltso 12875 | . . . . . . . . 9 ⊢ < Or ℝ* | |
19 | infpr 9262 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1)) | |
20 | 18, 5, 7, 19 | mp3an 1460 | . . . . . . . 8 ⊢ inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1) |
21 | 0lt1 11497 | . . . . . . . . 9 ⊢ 0 < 1 | |
22 | 21 | iftruei 4466 | . . . . . . . 8 ⊢ if(0 < 1, 0, 1) = 0 |
23 | 20, 22 | eqtri 2766 | . . . . . . 7 ⊢ inf({0, 1}, ℝ*, < ) = 0 |
24 | 17, 23 | eqtrdi 2794 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 0) |
25 | 24 | mpteq2ia 5177 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 0) |
26 | 25 | rneqi 5846 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 0) |
27 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 0) = (𝑘 ∈ ℝ ↦ 0) | |
28 | ren0 42942 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
30 | 27, 29 | rnmptc 7082 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 0) = {0}) |
31 | 30 | mptru 1546 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 0) = {0} |
32 | 26, 31 | eqtri 2766 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {0} |
33 | 32 | supeq1i 9206 | . 2 ⊢ sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = sup({0}, ℝ*, < ) |
34 | supsn 9231 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
35 | 18, 5, 34 | mp2an 689 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
36 | 14, 33, 35 | 3eqtri 2770 | 1 ⊢ (lim inf‘𝐹) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 ifcif 4459 {csn 4561 {cpr 4563 class class class wbr 5074 ↦ cmpt 5157 Or wor 5502 ran crn 5590 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supcsup 9199 infcinf 9200 ℝcr 10870 0cc0 10871 1c1 10872 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ℕcn 11973 2c2 12028 [,)cico 13081 ∥ cdvds 15963 lim infclsi 43292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fl 13512 df-ceil 13513 df-dvds 15964 df-liminf 43293 |
This theorem is referenced by: liminfltlimsupex 43322 |
Copyright terms: Public domain | W3C validator |