Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminf10ex Structured version   Visualization version   GIF version

Theorem liminf10ex 42409
Description: The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
liminf10ex.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
Assertion
Ref Expression
liminf10ex (lim inf‘𝐹) = 0

Proof of Theorem liminf10ex
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nftru 1806 . . . 4 𝑘
2 nnex 11635 . . . . 5 ℕ ∈ V
32a1i 11 . . . 4 (⊤ → ℕ ∈ V)
4 liminf10ex.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
5 0xr 10681 . . . . . . . 8 0 ∈ ℝ*
65a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 0 ∈ ℝ*)
7 1xr 10693 . . . . . . . 8 1 ∈ ℝ*
87a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 1 ∈ ℝ*)
96, 8ifcld 4473 . . . . . 6 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*)
104, 9fmpti 6857 . . . . 5 𝐹:ℕ⟶ℝ*
1110a1i 11 . . . 4 (⊤ → 𝐹:ℕ⟶ℝ*)
12 eqid 2801 . . . 4 (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
131, 3, 11, 12liminfval5 42400 . . 3 (⊤ → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
1413mptru 1545 . 2 (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )
15 id 22 . . . . . . . . 9 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
164, 15limsup10exlem 42407 . . . . . . . 8 (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1})
1716infeq1d 8929 . . . . . . 7 (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = inf({0, 1}, ℝ*, < ))
18 xrltso 12526 . . . . . . . . 9 < Or ℝ*
19 infpr 8955 . . . . . . . . 9 (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1))
2018, 5, 7, 19mp3an 1458 . . . . . . . 8 inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1)
21 0lt1 11155 . . . . . . . . 9 0 < 1
2221iftruei 4435 . . . . . . . 8 if(0 < 1, 0, 1) = 0
2320, 22eqtri 2824 . . . . . . 7 inf({0, 1}, ℝ*, < ) = 0
2417, 23eqtrdi 2852 . . . . . 6 (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 0)
2524mpteq2ia 5124 . . . . 5 (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 0)
2625rneqi 5775 . . . 4 ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 0)
27 eqid 2801 . . . . . 6 (𝑘 ∈ ℝ ↦ 0) = (𝑘 ∈ ℝ ↦ 0)
28 ren0 42032 . . . . . . 7 ℝ ≠ ∅
2928a1i 11 . . . . . 6 (⊤ → ℝ ≠ ∅)
3027, 29rnmptc 6950 . . . . 5 (⊤ → ran (𝑘 ∈ ℝ ↦ 0) = {0})
3130mptru 1545 . . . 4 ran (𝑘 ∈ ℝ ↦ 0) = {0}
3226, 31eqtri 2824 . . 3 ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {0}
3332supeq1i 8899 . 2 sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = sup({0}, ℝ*, < )
34 supsn 8924 . . 3 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3518, 5, 34mp2an 691 . 2 sup({0}, ℝ*, < ) = 0
3614, 33, 353eqtri 2828 1 (lim inf‘𝐹) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wtru 1539  wcel 2112  wne 2990  Vcvv 3444  c0 4246  ifcif 4428  {csn 4528  {cpr 4530   class class class wbr 5033  cmpt 5113   Or wor 5441  ran crn 5524  cima 5526  wf 6324  cfv 6328  (class class class)co 7139  supcsup 8892  infcinf 8893  cr 10529  0cc0 10530  1c1 10531  +∞cpnf 10665  *cxr 10667   < clt 10668  cn 11629  2c2 11684  [,)cico 12732  cdvds 15603  lim infclsi 42386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fl 13161  df-ceil 13162  df-dvds 15604  df-liminf 42387
This theorem is referenced by:  liminfltlimsupex  42416
  Copyright terms: Public domain W3C validator