![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminf10ex | Structured version Visualization version GIF version |
Description: The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminf10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
Ref | Expression |
---|---|
liminf10ex | ⊢ (lim inf‘𝐹) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1802 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
2 | nnex 12299 | . . . . 5 ⊢ ℕ ∈ V | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
4 | liminf10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
5 | 0xr 11337 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
7 | 1xr 11349 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
9 | 6, 8 | ifcld 4594 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
10 | 4, 9 | fmpti 7146 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
12 | eqid 2740 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
13 | 1, 3, 11, 12 | liminfval5 45686 | . . 3 ⊢ (⊤ → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
14 | 13 | mptru 1544 | . 2 ⊢ (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
16 | 4, 15 | limsup10exlem 45693 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
17 | 16 | infeq1d 9546 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = inf({0, 1}, ℝ*, < )) |
18 | xrltso 13203 | . . . . . . . . 9 ⊢ < Or ℝ* | |
19 | infpr 9572 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1)) | |
20 | 18, 5, 7, 19 | mp3an 1461 | . . . . . . . 8 ⊢ inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1) |
21 | 0lt1 11812 | . . . . . . . . 9 ⊢ 0 < 1 | |
22 | 21 | iftruei 4555 | . . . . . . . 8 ⊢ if(0 < 1, 0, 1) = 0 |
23 | 20, 22 | eqtri 2768 | . . . . . . 7 ⊢ inf({0, 1}, ℝ*, < ) = 0 |
24 | 17, 23 | eqtrdi 2796 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 0) |
25 | 24 | mpteq2ia 5269 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 0) |
26 | 25 | rneqi 5962 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 0) |
27 | eqid 2740 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 0) = (𝑘 ∈ ℝ ↦ 0) | |
28 | ren0 45317 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
30 | 27, 29 | rnmptc 7244 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 0) = {0}) |
31 | 30 | mptru 1544 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 0) = {0} |
32 | 26, 31 | eqtri 2768 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {0} |
33 | 32 | supeq1i 9516 | . 2 ⊢ sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = sup({0}, ℝ*, < ) |
34 | supsn 9541 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
35 | 18, 5, 34 | mp2an 691 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
36 | 14, 33, 35 | 3eqtri 2772 | 1 ⊢ (lim inf‘𝐹) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 ifcif 4548 {csn 4648 {cpr 4650 class class class wbr 5166 ↦ cmpt 5249 Or wor 5606 ran crn 5701 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 infcinf 9510 ℝcr 11183 0cc0 11184 1c1 11185 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ℕcn 12293 2c2 12348 [,)cico 13409 ∥ cdvds 16302 lim infclsi 45672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-fl 13843 df-ceil 13844 df-dvds 16303 df-liminf 45673 |
This theorem is referenced by: liminfltlimsupex 45702 |
Copyright terms: Public domain | W3C validator |