| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminf10ex | Structured version Visualization version GIF version | ||
| Description: The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminf10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
| Ref | Expression |
|---|---|
| liminf10ex | ⊢ (lim inf‘𝐹) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
| 2 | nnex 12168 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
| 4 | liminf10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
| 5 | 0xr 11197 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
| 7 | 1xr 11209 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
| 9 | 6, 8 | ifcld 4531 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
| 10 | 4, 9 | fmpti 7066 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
| 12 | eqid 2729 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
| 13 | 1, 3, 11, 12 | liminfval5 45736 | . . 3 ⊢ (⊤ → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
| 14 | 13 | mptru 1547 | . 2 ⊢ (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
| 15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
| 16 | 4, 15 | limsup10exlem 45743 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
| 17 | 16 | infeq1d 9405 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = inf({0, 1}, ℝ*, < )) |
| 18 | xrltso 13077 | . . . . . . . . 9 ⊢ < Or ℝ* | |
| 19 | infpr 9432 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1)) | |
| 20 | 18, 5, 7, 19 | mp3an 1463 | . . . . . . . 8 ⊢ inf({0, 1}, ℝ*, < ) = if(0 < 1, 0, 1) |
| 21 | 0lt1 11676 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 22 | 21 | iftruei 4491 | . . . . . . . 8 ⊢ if(0 < 1, 0, 1) = 0 |
| 23 | 20, 22 | eqtri 2752 | . . . . . . 7 ⊢ inf({0, 1}, ℝ*, < ) = 0 |
| 24 | 17, 23 | eqtrdi 2780 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 0) |
| 25 | 24 | mpteq2ia 5197 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 0) |
| 26 | 25 | rneqi 5890 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 0) |
| 27 | eqid 2729 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 0) = (𝑘 ∈ ℝ ↦ 0) | |
| 28 | ren0 45371 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
| 30 | 27, 29 | rnmptc 7163 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 0) = {0}) |
| 31 | 30 | mptru 1547 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 0) = {0} |
| 32 | 26, 31 | eqtri 2752 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {0} |
| 33 | 32 | supeq1i 9374 | . 2 ⊢ sup(ran (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = sup({0}, ℝ*, < ) |
| 34 | supsn 9400 | . . 3 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
| 35 | 18, 5, 34 | mp2an 692 | . 2 ⊢ sup({0}, ℝ*, < ) = 0 |
| 36 | 14, 33, 35 | 3eqtri 2756 | 1 ⊢ (lim inf‘𝐹) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 ifcif 4484 {csn 4585 {cpr 4587 class class class wbr 5102 ↦ cmpt 5183 Or wor 5538 ran crn 5632 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supcsup 9367 infcinf 9368 ℝcr 11043 0cc0 11044 1c1 11045 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ℕcn 12162 2c2 12217 [,)cico 13284 ∥ cdvds 16198 lim infclsi 45722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ico 13288 df-fl 13730 df-ceil 13731 df-dvds 16199 df-liminf 45723 |
| This theorem is referenced by: liminfltlimsupex 45752 |
| Copyright terms: Public domain | W3C validator |