![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminf10ex | Structured version Visualization version GIF version |
Description: The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminf10ex.1 | β’ πΉ = (π β β β¦ if(2 β₯ π, 0, 1)) |
Ref | Expression |
---|---|
liminf10ex | β’ (lim infβπΉ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . . 4 β’ β²πβ€ | |
2 | nnex 12218 | . . . . 5 β’ β β V | |
3 | 2 | a1i 11 | . . . 4 β’ (β€ β β β V) |
4 | liminf10ex.1 | . . . . . 6 β’ πΉ = (π β β β¦ if(2 β₯ π, 0, 1)) | |
5 | 0xr 11261 | . . . . . . . 8 β’ 0 β β* | |
6 | 5 | a1i 11 | . . . . . . 7 β’ (π β β β 0 β β*) |
7 | 1xr 11273 | . . . . . . . 8 β’ 1 β β* | |
8 | 7 | a1i 11 | . . . . . . 7 β’ (π β β β 1 β β*) |
9 | 6, 8 | ifcld 4575 | . . . . . 6 β’ (π β β β if(2 β₯ π, 0, 1) β β*) |
10 | 4, 9 | fmpti 7112 | . . . . 5 β’ πΉ:ββΆβ* |
11 | 10 | a1i 11 | . . . 4 β’ (β€ β πΉ:ββΆβ*) |
12 | eqid 2733 | . . . 4 β’ (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )) = (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )) | |
13 | 1, 3, 11, 12 | liminfval5 44481 | . . 3 β’ (β€ β (lim infβπΉ) = sup(ran (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )), β*, < )) |
14 | 13 | mptru 1549 | . 2 β’ (lim infβπΉ) = sup(ran (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )), β*, < ) |
15 | id 22 | . . . . . . . . 9 β’ (π β β β π β β) | |
16 | 4, 15 | limsup10exlem 44488 | . . . . . . . 8 β’ (π β β β (πΉ β (π[,)+β)) = {0, 1}) |
17 | 16 | infeq1d 9472 | . . . . . . 7 β’ (π β β β inf((πΉ β (π[,)+β)), β*, < ) = inf({0, 1}, β*, < )) |
18 | xrltso 13120 | . . . . . . . . 9 β’ < Or β* | |
19 | infpr 9498 | . . . . . . . . 9 β’ (( < Or β* β§ 0 β β* β§ 1 β β*) β inf({0, 1}, β*, < ) = if(0 < 1, 0, 1)) | |
20 | 18, 5, 7, 19 | mp3an 1462 | . . . . . . . 8 β’ inf({0, 1}, β*, < ) = if(0 < 1, 0, 1) |
21 | 0lt1 11736 | . . . . . . . . 9 β’ 0 < 1 | |
22 | 21 | iftruei 4536 | . . . . . . . 8 β’ if(0 < 1, 0, 1) = 0 |
23 | 20, 22 | eqtri 2761 | . . . . . . 7 β’ inf({0, 1}, β*, < ) = 0 |
24 | 17, 23 | eqtrdi 2789 | . . . . . 6 β’ (π β β β inf((πΉ β (π[,)+β)), β*, < ) = 0) |
25 | 24 | mpteq2ia 5252 | . . . . 5 β’ (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )) = (π β β β¦ 0) |
26 | 25 | rneqi 5937 | . . . 4 β’ ran (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )) = ran (π β β β¦ 0) |
27 | eqid 2733 | . . . . . 6 β’ (π β β β¦ 0) = (π β β β¦ 0) | |
28 | ren0 44112 | . . . . . . 7 β’ β β β | |
29 | 28 | a1i 11 | . . . . . 6 β’ (β€ β β β β ) |
30 | 27, 29 | rnmptc 7208 | . . . . 5 β’ (β€ β ran (π β β β¦ 0) = {0}) |
31 | 30 | mptru 1549 | . . . 4 β’ ran (π β β β¦ 0) = {0} |
32 | 26, 31 | eqtri 2761 | . . 3 β’ ran (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )) = {0} |
33 | 32 | supeq1i 9442 | . 2 β’ sup(ran (π β β β¦ inf((πΉ β (π[,)+β)), β*, < )), β*, < ) = sup({0}, β*, < ) |
34 | supsn 9467 | . . 3 β’ (( < Or β* β§ 0 β β*) β sup({0}, β*, < ) = 0) | |
35 | 18, 5, 34 | mp2an 691 | . 2 β’ sup({0}, β*, < ) = 0 |
36 | 14, 33, 35 | 3eqtri 2765 | 1 β’ (lim infβπΉ) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 β€wtru 1543 β wcel 2107 β wne 2941 Vcvv 3475 β c0 4323 ifcif 4529 {csn 4629 {cpr 4631 class class class wbr 5149 β¦ cmpt 5232 Or wor 5588 ran crn 5678 β cima 5680 βΆwf 6540 βcfv 6544 (class class class)co 7409 supcsup 9435 infcinf 9436 βcr 11109 0cc0 11110 1c1 11111 +βcpnf 11245 β*cxr 11247 < clt 11248 βcn 12212 2c2 12267 [,)cico 13326 β₯ cdvds 16197 lim infclsi 44467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-ico 13330 df-fl 13757 df-ceil 13758 df-dvds 16198 df-liminf 44468 |
This theorem is referenced by: liminfltlimsupex 44497 |
Copyright terms: Public domain | W3C validator |