Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimaxre4 Structured version   Visualization version   GIF version

Theorem fimaxre4 45428
Description: A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fimaxre4.1 𝑥𝜑
fimaxre4.2 (𝜑𝐴 ∈ Fin)
fimaxre4.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
fimaxre4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem fimaxre4
StepHypRef Expression
1 fimaxre4.2 . 2 (𝜑𝐴 ∈ Fin)
2 fimaxre4.1 . . 3 𝑥𝜑
3 fimaxre4.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
43ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵 ∈ ℝ))
52, 4ralrimi 3240 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
6 fimaxre3 12188 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
71, 5, 6syl2anc 584 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119  Fincfn 8959  cr 11128  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-addrcl 11190  ax-rnegex 11200  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275
This theorem is referenced by:  limsupubuzlem  45741
  Copyright terms: Public domain W3C validator