Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimaxre4 Structured version   Visualization version   GIF version

Theorem fimaxre4 40545
Description: A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fimaxre4.1 𝑥𝜑
fimaxre4.2 (𝜑𝐴 ∈ Fin)
fimaxre4.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
fimaxre4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem fimaxre4
StepHypRef Expression
1 fimaxre4.2 . 2 (𝜑𝐴 ∈ Fin)
2 fimaxre4.1 . . 3 𝑥𝜑
3 fimaxre4.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
43ex 403 . . 3 (𝜑 → (𝑥𝐴𝐵 ∈ ℝ))
52, 4ralrimi 3139 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
6 fimaxre3 11328 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
71, 5, 6syl2anc 579 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wnf 1827  wcel 2107  wral 3090  wrex 3091   class class class wbr 4888  Fincfn 8243  cr 10273  cle 10414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-addrcl 10335  ax-rnegex 10345  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419
This theorem is referenced by:  limsupubuzlem  40866
  Copyright terms: Public domain W3C validator