Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimaxre4 Structured version   Visualization version   GIF version

Theorem fimaxre4 42831
Description: A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fimaxre4.1 𝑥𝜑
fimaxre4.2 (𝜑𝐴 ∈ Fin)
fimaxre4.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
fimaxre4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem fimaxre4
StepHypRef Expression
1 fimaxre4.2 . 2 (𝜑𝐴 ∈ Fin)
2 fimaxre4.1 . . 3 𝑥𝜑
3 fimaxre4.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
43ex 412 . . 3 (𝜑 → (𝑥𝐴𝐵 ∈ ℝ))
52, 4ralrimi 3139 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
6 fimaxre3 11851 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
71, 5, 6syl2anc 583 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1787  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  Fincfn 8691  cr 10801  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-addrcl 10863  ax-rnegex 10873  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  limsupubuzlem  43143
  Copyright terms: Public domain W3C validator