Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimaxre4 Structured version   Visualization version   GIF version

Theorem fimaxre4 43276
Description: A nonempty finite set of real numbers is bounded (image set version). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fimaxre4.1 𝑥𝜑
fimaxre4.2 (𝜑𝐴 ∈ Fin)
fimaxre4.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
fimaxre4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem fimaxre4
StepHypRef Expression
1 fimaxre4.2 . 2 (𝜑𝐴 ∈ Fin)
2 fimaxre4.1 . . 3 𝑥𝜑
3 fimaxre4.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
43ex 413 . . 3 (𝜑 → (𝑥𝐴𝐵 ∈ ℝ))
52, 4ralrimi 3236 . 2 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
6 fimaxre3 12022 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
71, 5, 6syl2anc 584 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1784  wcel 2105  wral 3061  wrex 3070   class class class wbr 5092  Fincfn 8804  cr 10971  cle 11111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-resscn 11029  ax-1cn 11030  ax-addrcl 11033  ax-rnegex 11043  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-om 7781  df-1st 7899  df-2nd 7900  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116
This theorem is referenced by:  limsupubuzlem  43589
  Copyright terms: Public domain W3C validator