| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzelz2 | Structured version Visualization version GIF version | ||
| Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| eluzelz2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| eluzelz2 | ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | eluzelz 12779 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: eluzelz2d 45402 uzublem 45419 uzinico 45550 limsupubuzlem 45703 limsupmnfuzlem 45717 limsupre3uzlem 45726 limsupvaluz2 45729 supcnvlimsup 45731 xlimclim2lem 45830 climxlim2 45837 xlimliminflimsup 45853 smflimmpt 46801 smflimsuplem3 46813 smflimsuplem4 46814 smflimsuplem5 46815 smflimsuplem6 46816 smflimsuplem7 46817 smflimsuplem8 46818 smflimsupmpt 46820 smfliminflem 46821 smfliminfmpt 46823 |
| Copyright terms: Public domain | W3C validator |