| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzelz2 | Structured version Visualization version GIF version | ||
| Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| eluzelz2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| eluzelz2 | ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | eleq2i 2826 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | eluzelz 12860 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 ℤcz 12586 ℤ≥cuz 12850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-cnex 11183 ax-resscn 11184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-neg 11467 df-z 12587 df-uz 12851 |
| This theorem is referenced by: eluzelz2d 45388 uzublem 45405 uzinico 45536 limsupubuzlem 45689 limsupmnfuzlem 45703 limsupre3uzlem 45712 limsupvaluz2 45715 supcnvlimsup 45717 xlimclim2lem 45816 climxlim2 45823 xlimliminflimsup 45839 smflimmpt 46787 smflimsuplem3 46799 smflimsuplem4 46800 smflimsuplem5 46801 smflimsuplem6 46802 smflimsuplem7 46803 smflimsuplem8 46804 smflimsupmpt 46806 smfliminflem 46807 smfliminfmpt 46809 |
| Copyright terms: Public domain | W3C validator |