Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzelz2 | Structured version Visualization version GIF version |
Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
eluzelz2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
eluzelz2 | ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | eleq2i 2830 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
3 | 2 | biimpi 215 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | eluzelz 12521 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: eluzelz2d 42843 uzublem 42860 uzinico 42988 limsupubuzlem 43143 limsupmnfuzlem 43157 limsupre3uzlem 43166 limsupvaluz2 43169 supcnvlimsup 43171 xlimclim2lem 43270 climxlim2 43277 xlimliminflimsup 43293 smflimmpt 44230 smflimsuplem3 44242 smflimsuplem4 44243 smflimsuplem5 44244 smflimsuplem6 44245 smflimsuplem7 44246 smflimsuplem8 44247 smflimsupmpt 44249 smfliminflem 44250 smfliminfmpt 44252 |
Copyright terms: Public domain | W3C validator |