Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eluzelz2 Structured version   Visualization version   GIF version

Theorem eluzelz2 45392
Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
eluzelz2.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
eluzelz2 (𝑁𝑍𝑁 ∈ ℤ)

Proof of Theorem eluzelz2
StepHypRef Expression
1 eluzelz2.1 . . . 4 𝑍 = (ℤ𝑀)
21eleq2i 2820 . . 3 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
32biimpi 216 . 2 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
4 eluzelz 12745 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
53, 4syl 17 1 (𝑁𝑍𝑁 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6482  cz 12471  cuz 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-neg 11350  df-z 12472  df-uz 12736
This theorem is referenced by:  eluzelz2d  45402  uzublem  45419  uzinico  45550  limsupubuzlem  45703  limsupmnfuzlem  45717  limsupre3uzlem  45726  limsupvaluz2  45729  supcnvlimsup  45731  xlimclim2lem  45830  climxlim2  45837  xlimliminflimsup  45853  smflimmpt  46801  smflimsuplem3  46813  smflimsuplem4  46814  smflimsuplem5  46815  smflimsuplem6  46816  smflimsuplem7  46817  smflimsuplem8  46818  smflimsupmpt  46820  smfliminflem  46821  smfliminfmpt  46823
  Copyright terms: Public domain W3C validator