| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzelz2 | Structured version Visualization version GIF version | ||
| Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| eluzelz2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| eluzelz2 | ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | 1 | eleq2i 2827 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | eluzelz 12867 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-neg 11474 df-z 12594 df-uz 12858 |
| This theorem is referenced by: eluzelz2d 45407 uzublem 45424 uzinico 45555 limsupubuzlem 45708 limsupmnfuzlem 45722 limsupre3uzlem 45731 limsupvaluz2 45734 supcnvlimsup 45736 xlimclim2lem 45835 climxlim2 45842 xlimliminflimsup 45858 smflimmpt 46806 smflimsuplem3 46818 smflimsuplem4 46819 smflimsuplem5 46820 smflimsuplem6 46821 smflimsuplem7 46822 smflimsuplem8 46823 smflimsupmpt 46825 smfliminflem 46826 smfliminfmpt 46828 |
| Copyright terms: Public domain | W3C validator |