| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup10ex | Structured version Visualization version GIF version | ||
| Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsup10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
| Ref | Expression |
|---|---|
| limsup10ex | ⊢ (lim sup‘𝐹) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
| 2 | nnex 12126 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
| 4 | limsup10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
| 5 | 0xr 11154 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
| 7 | 1xr 11166 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
| 9 | 6, 8 | ifcld 4517 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
| 10 | 4, 9 | fmpti 7040 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
| 12 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
| 13 | 1, 3, 11, 12 | limsupval3 45730 | . . 3 ⊢ (⊤ → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
| 14 | 13 | mptru 1548 | . 2 ⊢ (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
| 15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
| 16 | 4, 15 | limsup10exlem 45810 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
| 17 | 16 | supeq1d 9325 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup({0, 1}, ℝ*, < )) |
| 18 | xrltso 13035 | . . . . . . . . 9 ⊢ < Or ℝ* | |
| 19 | suppr 9351 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1)) | |
| 20 | 18, 5, 7, 19 | mp3an 1463 | . . . . . . . 8 ⊢ sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1) |
| 21 | 0le1 11635 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
| 22 | 0re 11109 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
| 23 | 1re 11107 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 24 | 22, 23 | lenlti 11228 | . . . . . . . . . 10 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
| 25 | 21, 24 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 1 < 0 |
| 26 | 25 | iffalsei 4480 | . . . . . . . 8 ⊢ if(1 < 0, 0, 1) = 1 |
| 27 | 20, 26 | eqtri 2754 | . . . . . . 7 ⊢ sup({0, 1}, ℝ*, < ) = 1 |
| 28 | 17, 27 | eqtrdi 2782 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 1) |
| 29 | 28 | mpteq2ia 5181 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 1) |
| 30 | 29 | rneqi 5872 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 1) |
| 31 | eqid 2731 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 1) = (𝑘 ∈ ℝ ↦ 1) | |
| 32 | ren0 45440 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
| 34 | 31, 33 | rnmptc 7136 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 1) = {1}) |
| 35 | 34 | mptru 1548 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 1) = {1} |
| 36 | 30, 35 | eqtri 2754 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {1} |
| 37 | 36 | infeq1i 9358 | . 2 ⊢ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = inf({1}, ℝ*, < ) |
| 38 | infsn 9386 | . . 3 ⊢ (( < Or ℝ* ∧ 1 ∈ ℝ*) → inf({1}, ℝ*, < ) = 1) | |
| 39 | 18, 7, 38 | mp2an 692 | . 2 ⊢ inf({1}, ℝ*, < ) = 1 |
| 40 | 14, 37, 39 | 3eqtri 2758 | 1 ⊢ (lim sup‘𝐹) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4278 ifcif 4470 {csn 4571 {cpr 4573 class class class wbr 5086 ↦ cmpt 5167 Or wor 5518 ran crn 5612 “ cima 5614 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 supcsup 9319 infcinf 9320 ℝcr 11000 0cc0 11001 1c1 11002 +∞cpnf 11138 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 ℕcn 12120 2c2 12175 [,)cico 13242 lim supclsp 15372 ∥ cdvds 16158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-fl 13691 df-ceil 13692 df-limsup 15373 df-dvds 16159 |
| This theorem is referenced by: liminfltlimsupex 45819 |
| Copyright terms: Public domain | W3C validator |