![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup10ex | Structured version Visualization version GIF version |
Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsup10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
Ref | Expression |
---|---|
limsup10ex | ⊢ (lim sup‘𝐹) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1806 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
2 | nnex 12159 | . . . . 5 ⊢ ℕ ∈ V | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
4 | limsup10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
5 | 0xr 11202 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
7 | 1xr 11214 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
9 | 6, 8 | ifcld 4532 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
10 | 4, 9 | fmpti 7060 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
12 | eqid 2736 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
13 | 1, 3, 11, 12 | limsupval3 43923 | . . 3 ⊢ (⊤ → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
14 | 13 | mptru 1548 | . 2 ⊢ (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
16 | 4, 15 | limsup10exlem 44003 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
17 | 16 | supeq1d 9382 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup({0, 1}, ℝ*, < )) |
18 | xrltso 13060 | . . . . . . . . 9 ⊢ < Or ℝ* | |
19 | suppr 9407 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1)) | |
20 | 18, 5, 7, 19 | mp3an 1461 | . . . . . . . 8 ⊢ sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1) |
21 | 0le1 11678 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
22 | 0re 11157 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
23 | 1re 11155 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
24 | 22, 23 | lenlti 11275 | . . . . . . . . . 10 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
25 | 21, 24 | mpbi 229 | . . . . . . . . 9 ⊢ ¬ 1 < 0 |
26 | 25 | iffalsei 4496 | . . . . . . . 8 ⊢ if(1 < 0, 0, 1) = 1 |
27 | 20, 26 | eqtri 2764 | . . . . . . 7 ⊢ sup({0, 1}, ℝ*, < ) = 1 |
28 | 17, 27 | eqtrdi 2792 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 1) |
29 | 28 | mpteq2ia 5208 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 1) |
30 | 29 | rneqi 5892 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 1) |
31 | eqid 2736 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 1) = (𝑘 ∈ ℝ ↦ 1) | |
32 | ren0 43627 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
34 | 31, 33 | rnmptc 7156 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 1) = {1}) |
35 | 34 | mptru 1548 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 1) = {1} |
36 | 30, 35 | eqtri 2764 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {1} |
37 | 36 | infeq1i 9414 | . 2 ⊢ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = inf({1}, ℝ*, < ) |
38 | infsn 9441 | . . 3 ⊢ (( < Or ℝ* ∧ 1 ∈ ℝ*) → inf({1}, ℝ*, < ) = 1) | |
39 | 18, 7, 38 | mp2an 690 | . 2 ⊢ inf({1}, ℝ*, < ) = 1 |
40 | 14, 37, 39 | 3eqtri 2768 | 1 ⊢ (lim sup‘𝐹) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ≠ wne 2943 Vcvv 3445 ∅c0 4282 ifcif 4486 {csn 4586 {cpr 4588 class class class wbr 5105 ↦ cmpt 5188 Or wor 5544 ran crn 5634 “ cima 5636 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 supcsup 9376 infcinf 9377 ℝcr 11050 0cc0 11051 1c1 11052 +∞cpnf 11186 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 ℕcn 12153 2c2 12208 [,)cico 13266 lim supclsp 15352 ∥ cdvds 16136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-ico 13270 df-fl 13697 df-ceil 13698 df-limsup 15353 df-dvds 16137 |
This theorem is referenced by: liminfltlimsupex 44012 |
Copyright terms: Public domain | W3C validator |