| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup10ex | Structured version Visualization version GIF version | ||
| Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsup10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
| Ref | Expression |
|---|---|
| limsup10ex | ⊢ (lim sup‘𝐹) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
| 2 | nnex 12199 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
| 4 | limsup10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
| 5 | 0xr 11228 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
| 7 | 1xr 11240 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
| 9 | 6, 8 | ifcld 4538 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
| 10 | 4, 9 | fmpti 7087 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
| 12 | eqid 2730 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
| 13 | 1, 3, 11, 12 | limsupval3 45697 | . . 3 ⊢ (⊤ → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
| 14 | 13 | mptru 1547 | . 2 ⊢ (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
| 15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
| 16 | 4, 15 | limsup10exlem 45777 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
| 17 | 16 | supeq1d 9404 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup({0, 1}, ℝ*, < )) |
| 18 | xrltso 13108 | . . . . . . . . 9 ⊢ < Or ℝ* | |
| 19 | suppr 9430 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1)) | |
| 20 | 18, 5, 7, 19 | mp3an 1463 | . . . . . . . 8 ⊢ sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1) |
| 21 | 0le1 11708 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
| 22 | 0re 11183 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
| 23 | 1re 11181 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 24 | 22, 23 | lenlti 11301 | . . . . . . . . . 10 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
| 25 | 21, 24 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 1 < 0 |
| 26 | 25 | iffalsei 4501 | . . . . . . . 8 ⊢ if(1 < 0, 0, 1) = 1 |
| 27 | 20, 26 | eqtri 2753 | . . . . . . 7 ⊢ sup({0, 1}, ℝ*, < ) = 1 |
| 28 | 17, 27 | eqtrdi 2781 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 1) |
| 29 | 28 | mpteq2ia 5205 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 1) |
| 30 | 29 | rneqi 5904 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 1) |
| 31 | eqid 2730 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 1) = (𝑘 ∈ ℝ ↦ 1) | |
| 32 | ren0 45405 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
| 34 | 31, 33 | rnmptc 7184 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 1) = {1}) |
| 35 | 34 | mptru 1547 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 1) = {1} |
| 36 | 30, 35 | eqtri 2753 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {1} |
| 37 | 36 | infeq1i 9437 | . 2 ⊢ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = inf({1}, ℝ*, < ) |
| 38 | infsn 9465 | . . 3 ⊢ (( < Or ℝ* ∧ 1 ∈ ℝ*) → inf({1}, ℝ*, < ) = 1) | |
| 39 | 18, 7, 38 | mp2an 692 | . 2 ⊢ inf({1}, ℝ*, < ) = 1 |
| 40 | 14, 37, 39 | 3eqtri 2757 | 1 ⊢ (lim sup‘𝐹) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 ifcif 4491 {csn 4592 {cpr 4594 class class class wbr 5110 ↦ cmpt 5191 Or wor 5548 ran crn 5642 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supcsup 9398 infcinf 9399 ℝcr 11074 0cc0 11075 1c1 11076 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 ℕcn 12193 2c2 12248 [,)cico 13315 lim supclsp 15443 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fl 13761 df-ceil 13762 df-limsup 15444 df-dvds 16230 |
| This theorem is referenced by: liminfltlimsupex 45786 |
| Copyright terms: Public domain | W3C validator |