| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup10ex | Structured version Visualization version GIF version | ||
| Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| limsup10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
| Ref | Expression |
|---|---|
| limsup10ex | ⊢ (lim sup‘𝐹) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
| 2 | nnex 12246 | . . . . 5 ⊢ ℕ ∈ V | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
| 4 | limsup10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
| 5 | 0xr 11282 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
| 7 | 1xr 11294 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
| 9 | 6, 8 | ifcld 4547 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
| 10 | 4, 9 | fmpti 7102 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
| 12 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
| 13 | 1, 3, 11, 12 | limsupval3 45721 | . . 3 ⊢ (⊤ → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
| 14 | 13 | mptru 1547 | . 2 ⊢ (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
| 15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
| 16 | 4, 15 | limsup10exlem 45801 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
| 17 | 16 | supeq1d 9458 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup({0, 1}, ℝ*, < )) |
| 18 | xrltso 13157 | . . . . . . . . 9 ⊢ < Or ℝ* | |
| 19 | suppr 9484 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1)) | |
| 20 | 18, 5, 7, 19 | mp3an 1463 | . . . . . . . 8 ⊢ sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1) |
| 21 | 0le1 11760 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
| 22 | 0re 11237 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
| 23 | 1re 11235 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
| 24 | 22, 23 | lenlti 11355 | . . . . . . . . . 10 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
| 25 | 21, 24 | mpbi 230 | . . . . . . . . 9 ⊢ ¬ 1 < 0 |
| 26 | 25 | iffalsei 4510 | . . . . . . . 8 ⊢ if(1 < 0, 0, 1) = 1 |
| 27 | 20, 26 | eqtri 2758 | . . . . . . 7 ⊢ sup({0, 1}, ℝ*, < ) = 1 |
| 28 | 17, 27 | eqtrdi 2786 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 1) |
| 29 | 28 | mpteq2ia 5216 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 1) |
| 30 | 29 | rneqi 5917 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 1) |
| 31 | eqid 2735 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 1) = (𝑘 ∈ ℝ ↦ 1) | |
| 32 | ren0 45429 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
| 34 | 31, 33 | rnmptc 7199 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 1) = {1}) |
| 35 | 34 | mptru 1547 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 1) = {1} |
| 36 | 30, 35 | eqtri 2758 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {1} |
| 37 | 36 | infeq1i 9491 | . 2 ⊢ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = inf({1}, ℝ*, < ) |
| 38 | infsn 9519 | . . 3 ⊢ (( < Or ℝ* ∧ 1 ∈ ℝ*) → inf({1}, ℝ*, < ) = 1) | |
| 39 | 18, 7, 38 | mp2an 692 | . 2 ⊢ inf({1}, ℝ*, < ) = 1 |
| 40 | 14, 37, 39 | 3eqtri 2762 | 1 ⊢ (lim sup‘𝐹) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 ifcif 4500 {csn 4601 {cpr 4603 class class class wbr 5119 ↦ cmpt 5201 Or wor 5560 ran crn 5655 “ cima 5657 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 supcsup 9452 infcinf 9453 ℝcr 11128 0cc0 11129 1c1 11130 +∞cpnf 11266 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 ℕcn 12240 2c2 12295 [,)cico 13364 lim supclsp 15486 ∥ cdvds 16272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-fl 13809 df-ceil 13810 df-limsup 15487 df-dvds 16273 |
| This theorem is referenced by: liminfltlimsupex 45810 |
| Copyright terms: Public domain | W3C validator |