Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup10ex Structured version   Visualization version   GIF version

Theorem limsup10ex 45754
Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
limsup10ex.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
Assertion
Ref Expression
limsup10ex (lim sup‘𝐹) = 1

Proof of Theorem limsup10ex
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nftru 1804 . . . 4 𝑘
2 nnex 12134 . . . . 5 ℕ ∈ V
32a1i 11 . . . 4 (⊤ → ℕ ∈ V)
4 limsup10ex.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
5 0xr 11162 . . . . . . . 8 0 ∈ ℝ*
65a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 0 ∈ ℝ*)
7 1xr 11174 . . . . . . . 8 1 ∈ ℝ*
87a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 1 ∈ ℝ*)
96, 8ifcld 4523 . . . . . 6 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*)
104, 9fmpti 7046 . . . . 5 𝐹:ℕ⟶ℝ*
1110a1i 11 . . . 4 (⊤ → 𝐹:ℕ⟶ℝ*)
12 eqid 2729 . . . 4 (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
131, 3, 11, 12limsupval3 45673 . . 3 (⊤ → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
1413mptru 1547 . 2 (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )
15 id 22 . . . . . . . . 9 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
164, 15limsup10exlem 45753 . . . . . . . 8 (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1})
1716supeq1d 9336 . . . . . . 7 (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup({0, 1}, ℝ*, < ))
18 xrltso 13043 . . . . . . . . 9 < Or ℝ*
19 suppr 9362 . . . . . . . . 9 (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1))
2018, 5, 7, 19mp3an 1463 . . . . . . . 8 sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1)
21 0le1 11643 . . . . . . . . . 10 0 ≤ 1
22 0re 11117 . . . . . . . . . . 11 0 ∈ ℝ
23 1re 11115 . . . . . . . . . . 11 1 ∈ ℝ
2422, 23lenlti 11236 . . . . . . . . . 10 (0 ≤ 1 ↔ ¬ 1 < 0)
2521, 24mpbi 230 . . . . . . . . 9 ¬ 1 < 0
2625iffalsei 4486 . . . . . . . 8 if(1 < 0, 0, 1) = 1
2720, 26eqtri 2752 . . . . . . 7 sup({0, 1}, ℝ*, < ) = 1
2817, 27eqtrdi 2780 . . . . . 6 (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 1)
2928mpteq2ia 5187 . . . . 5 (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 1)
3029rneqi 5879 . . . 4 ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 1)
31 eqid 2729 . . . . . 6 (𝑘 ∈ ℝ ↦ 1) = (𝑘 ∈ ℝ ↦ 1)
32 ren0 45381 . . . . . . 7 ℝ ≠ ∅
3332a1i 11 . . . . . 6 (⊤ → ℝ ≠ ∅)
3431, 33rnmptc 7143 . . . . 5 (⊤ → ran (𝑘 ∈ ℝ ↦ 1) = {1})
3534mptru 1547 . . . 4 ran (𝑘 ∈ ℝ ↦ 1) = {1}
3630, 35eqtri 2752 . . 3 ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {1}
3736infeq1i 9369 . 2 inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = inf({1}, ℝ*, < )
38 infsn 9397 . . 3 (( < Or ℝ* ∧ 1 ∈ ℝ*) → inf({1}, ℝ*, < ) = 1)
3918, 7, 38mp2an 692 . 2 inf({1}, ℝ*, < ) = 1
4014, 37, 393eqtri 2756 1 (lim sup‘𝐹) = 1
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wtru 1541  wcel 2109  wne 2925  Vcvv 3436  c0 4284  ifcif 4476  {csn 4577  {cpr 4579   class class class wbr 5092  cmpt 5173   Or wor 5526  ran crn 5620  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  infcinf 9331  cr 11008  0cc0 11009  1c1 11010  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cn 12128  2c2 12183  [,)cico 13250  lim supclsp 15377  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fl 13696  df-ceil 13697  df-limsup 15378  df-dvds 16164
This theorem is referenced by:  liminfltlimsupex  45762
  Copyright terms: Public domain W3C validator