Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup10ex | Structured version Visualization version GIF version |
Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsup10ex.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) |
Ref | Expression |
---|---|
limsup10ex | ⊢ (lim sup‘𝐹) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1808 | . . . 4 ⊢ Ⅎ𝑘⊤ | |
2 | nnex 11909 | . . . . 5 ⊢ ℕ ∈ V | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ ∈ V) |
4 | limsup10ex.1 | . . . . . 6 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) | |
5 | 0xr 10953 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 0 ∈ ℝ*) |
7 | 1xr 10965 | . . . . . . . 8 ⊢ 1 ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 1 ∈ ℝ*) |
9 | 6, 8 | ifcld 4502 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*) |
10 | 4, 9 | fmpti 6968 | . . . . 5 ⊢ 𝐹:ℕ⟶ℝ* |
11 | 10 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐹:ℕ⟶ℝ*) |
12 | eqid 2738 | . . . 4 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) | |
13 | 1, 3, 11, 12 | limsupval3 43123 | . . 3 ⊢ (⊤ → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )) |
14 | 13 | mptru 1546 | . 2 ⊢ (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) |
15 | id 22 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℝ → 𝑘 ∈ ℝ) | |
16 | 4, 15 | limsup10exlem 43203 | . . . . . . . 8 ⊢ (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1}) |
17 | 16 | supeq1d 9135 | . . . . . . 7 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup({0, 1}, ℝ*, < )) |
18 | xrltso 12804 | . . . . . . . . 9 ⊢ < Or ℝ* | |
19 | suppr 9160 | . . . . . . . . 9 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1)) | |
20 | 18, 5, 7, 19 | mp3an 1459 | . . . . . . . 8 ⊢ sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1) |
21 | 0le1 11428 | . . . . . . . . . 10 ⊢ 0 ≤ 1 | |
22 | 0re 10908 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
23 | 1re 10906 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
24 | 22, 23 | lenlti 11025 | . . . . . . . . . 10 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
25 | 21, 24 | mpbi 229 | . . . . . . . . 9 ⊢ ¬ 1 < 0 |
26 | 25 | iffalsei 4466 | . . . . . . . 8 ⊢ if(1 < 0, 0, 1) = 1 |
27 | 20, 26 | eqtri 2766 | . . . . . . 7 ⊢ sup({0, 1}, ℝ*, < ) = 1 |
28 | 17, 27 | eqtrdi 2795 | . . . . . 6 ⊢ (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 1) |
29 | 28 | mpteq2ia 5173 | . . . . 5 ⊢ (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 1) |
30 | 29 | rneqi 5835 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 1) |
31 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ ℝ ↦ 1) = (𝑘 ∈ ℝ ↦ 1) | |
32 | ren0 42832 | . . . . . . 7 ⊢ ℝ ≠ ∅ | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ≠ ∅) |
34 | 31, 33 | rnmptc 7064 | . . . . 5 ⊢ (⊤ → ran (𝑘 ∈ ℝ ↦ 1) = {1}) |
35 | 34 | mptru 1546 | . . . 4 ⊢ ran (𝑘 ∈ ℝ ↦ 1) = {1} |
36 | 30, 35 | eqtri 2766 | . . 3 ⊢ ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {1} |
37 | 36 | infeq1i 9167 | . 2 ⊢ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = inf({1}, ℝ*, < ) |
38 | infsn 9194 | . . 3 ⊢ (( < Or ℝ* ∧ 1 ∈ ℝ*) → inf({1}, ℝ*, < ) = 1) | |
39 | 18, 7, 38 | mp2an 688 | . 2 ⊢ inf({1}, ℝ*, < ) = 1 |
40 | 14, 37, 39 | 3eqtri 2770 | 1 ⊢ (lim sup‘𝐹) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 ifcif 4456 {csn 4558 {cpr 4560 class class class wbr 5070 ↦ cmpt 5153 Or wor 5493 ran crn 5581 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supcsup 9129 infcinf 9130 ℝcr 10801 0cc0 10802 1c1 10803 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℕcn 11903 2c2 11958 [,)cico 13010 lim supclsp 15107 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fl 13440 df-ceil 13441 df-limsup 15108 df-dvds 15892 |
This theorem is referenced by: liminfltlimsupex 43212 |
Copyright terms: Public domain | W3C validator |