Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsup10ex Structured version   Visualization version   GIF version

Theorem limsup10ex 44004
Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
limsup10ex.1 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
Assertion
Ref Expression
limsup10ex (lim sup‘𝐹) = 1

Proof of Theorem limsup10ex
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nftru 1806 . . . 4 𝑘
2 nnex 12159 . . . . 5 ℕ ∈ V
32a1i 11 . . . 4 (⊤ → ℕ ∈ V)
4 limsup10ex.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1))
5 0xr 11202 . . . . . . . 8 0 ∈ ℝ*
65a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 0 ∈ ℝ*)
7 1xr 11214 . . . . . . . 8 1 ∈ ℝ*
87a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → 1 ∈ ℝ*)
96, 8ifcld 4532 . . . . . 6 (𝑛 ∈ ℕ → if(2 ∥ 𝑛, 0, 1) ∈ ℝ*)
104, 9fmpti 7060 . . . . 5 𝐹:ℕ⟶ℝ*
1110a1i 11 . . . 4 (⊤ → 𝐹:ℕ⟶ℝ*)
12 eqid 2736 . . . 4 (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
131, 3, 11, 12limsupval3 43923 . . 3 (⊤ → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
1413mptru 1548 . 2 (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )
15 id 22 . . . . . . . . 9 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ)
164, 15limsup10exlem 44003 . . . . . . . 8 (𝑘 ∈ ℝ → (𝐹 “ (𝑘[,)+∞)) = {0, 1})
1716supeq1d 9382 . . . . . . 7 (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = sup({0, 1}, ℝ*, < ))
18 xrltso 13060 . . . . . . . . 9 < Or ℝ*
19 suppr 9407 . . . . . . . . 9 (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 1 ∈ ℝ*) → sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1))
2018, 5, 7, 19mp3an 1461 . . . . . . . 8 sup({0, 1}, ℝ*, < ) = if(1 < 0, 0, 1)
21 0le1 11678 . . . . . . . . . 10 0 ≤ 1
22 0re 11157 . . . . . . . . . . 11 0 ∈ ℝ
23 1re 11155 . . . . . . . . . . 11 1 ∈ ℝ
2422, 23lenlti 11275 . . . . . . . . . 10 (0 ≤ 1 ↔ ¬ 1 < 0)
2521, 24mpbi 229 . . . . . . . . 9 ¬ 1 < 0
2625iffalsei 4496 . . . . . . . 8 if(1 < 0, 0, 1) = 1
2720, 26eqtri 2764 . . . . . . 7 sup({0, 1}, ℝ*, < ) = 1
2817, 27eqtrdi 2792 . . . . . 6 (𝑘 ∈ ℝ → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) = 1)
2928mpteq2ia 5208 . . . . 5 (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = (𝑘 ∈ ℝ ↦ 1)
3029rneqi 5892 . . . 4 ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ 1)
31 eqid 2736 . . . . . 6 (𝑘 ∈ ℝ ↦ 1) = (𝑘 ∈ ℝ ↦ 1)
32 ren0 43627 . . . . . . 7 ℝ ≠ ∅
3332a1i 11 . . . . . 6 (⊤ → ℝ ≠ ∅)
3431, 33rnmptc 7156 . . . . 5 (⊤ → ran (𝑘 ∈ ℝ ↦ 1) = {1})
3534mptru 1548 . . . 4 ran (𝑘 ∈ ℝ ↦ 1) = {1}
3630, 35eqtri 2764 . . 3 ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) = {1}
3736infeq1i 9414 . 2 inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = inf({1}, ℝ*, < )
38 infsn 9441 . . 3 (( < Or ℝ* ∧ 1 ∈ ℝ*) → inf({1}, ℝ*, < ) = 1)
3918, 7, 38mp2an 690 . 2 inf({1}, ℝ*, < ) = 1
4014, 37, 393eqtri 2768 1 (lim sup‘𝐹) = 1
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wtru 1542  wcel 2106  wne 2943  Vcvv 3445  c0 4282  ifcif 4486  {csn 4586  {cpr 4588   class class class wbr 5105  cmpt 5188   Or wor 5544  ran crn 5634  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  infcinf 9377  cr 11050  0cc0 11051  1c1 11052  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cn 12153  2c2 12208  [,)cico 13266  lim supclsp 15352  cdvds 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fl 13697  df-ceil 13698  df-limsup 15353  df-dvds 16137
This theorem is referenced by:  liminfltlimsupex  44012
  Copyright terms: Public domain W3C validator