![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsup10ex | Structured version Visualization version GIF version |
Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
limsup10ex.1 | β’ πΉ = (π β β β¦ if(2 β₯ π, 0, 1)) |
Ref | Expression |
---|---|
limsup10ex | β’ (lim supβπΉ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1798 | . . . 4 β’ β²πβ€ | |
2 | nnex 12246 | . . . . 5 β’ β β V | |
3 | 2 | a1i 11 | . . . 4 β’ (β€ β β β V) |
4 | limsup10ex.1 | . . . . . 6 β’ πΉ = (π β β β¦ if(2 β₯ π, 0, 1)) | |
5 | 0xr 11289 | . . . . . . . 8 β’ 0 β β* | |
6 | 5 | a1i 11 | . . . . . . 7 β’ (π β β β 0 β β*) |
7 | 1xr 11301 | . . . . . . . 8 β’ 1 β β* | |
8 | 7 | a1i 11 | . . . . . . 7 β’ (π β β β 1 β β*) |
9 | 6, 8 | ifcld 4570 | . . . . . 6 β’ (π β β β if(2 β₯ π, 0, 1) β β*) |
10 | 4, 9 | fmpti 7116 | . . . . 5 β’ πΉ:ββΆβ* |
11 | 10 | a1i 11 | . . . 4 β’ (β€ β πΉ:ββΆβ*) |
12 | eqid 2725 | . . . 4 β’ (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )) = (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )) | |
13 | 1, 3, 11, 12 | limsupval3 45142 | . . 3 β’ (β€ β (lim supβπΉ) = inf(ran (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )), β*, < )) |
14 | 13 | mptru 1540 | . 2 β’ (lim supβπΉ) = inf(ran (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )), β*, < ) |
15 | id 22 | . . . . . . . . 9 β’ (π β β β π β β) | |
16 | 4, 15 | limsup10exlem 45222 | . . . . . . . 8 β’ (π β β β (πΉ β (π[,)+β)) = {0, 1}) |
17 | 16 | supeq1d 9467 | . . . . . . 7 β’ (π β β β sup((πΉ β (π[,)+β)), β*, < ) = sup({0, 1}, β*, < )) |
18 | xrltso 13150 | . . . . . . . . 9 β’ < Or β* | |
19 | suppr 9492 | . . . . . . . . 9 β’ (( < Or β* β§ 0 β β* β§ 1 β β*) β sup({0, 1}, β*, < ) = if(1 < 0, 0, 1)) | |
20 | 18, 5, 7, 19 | mp3an 1457 | . . . . . . . 8 β’ sup({0, 1}, β*, < ) = if(1 < 0, 0, 1) |
21 | 0le1 11765 | . . . . . . . . . 10 β’ 0 β€ 1 | |
22 | 0re 11244 | . . . . . . . . . . 11 β’ 0 β β | |
23 | 1re 11242 | . . . . . . . . . . 11 β’ 1 β β | |
24 | 22, 23 | lenlti 11362 | . . . . . . . . . 10 β’ (0 β€ 1 β Β¬ 1 < 0) |
25 | 21, 24 | mpbi 229 | . . . . . . . . 9 β’ Β¬ 1 < 0 |
26 | 25 | iffalsei 4534 | . . . . . . . 8 β’ if(1 < 0, 0, 1) = 1 |
27 | 20, 26 | eqtri 2753 | . . . . . . 7 β’ sup({0, 1}, β*, < ) = 1 |
28 | 17, 27 | eqtrdi 2781 | . . . . . 6 β’ (π β β β sup((πΉ β (π[,)+β)), β*, < ) = 1) |
29 | 28 | mpteq2ia 5246 | . . . . 5 β’ (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )) = (π β β β¦ 1) |
30 | 29 | rneqi 5933 | . . . 4 β’ ran (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )) = ran (π β β β¦ 1) |
31 | eqid 2725 | . . . . . 6 β’ (π β β β¦ 1) = (π β β β¦ 1) | |
32 | ren0 44846 | . . . . . . 7 β’ β β β | |
33 | 32 | a1i 11 | . . . . . 6 β’ (β€ β β β β ) |
34 | 31, 33 | rnmptc 7214 | . . . . 5 β’ (β€ β ran (π β β β¦ 1) = {1}) |
35 | 34 | mptru 1540 | . . . 4 β’ ran (π β β β¦ 1) = {1} |
36 | 30, 35 | eqtri 2753 | . . 3 β’ ran (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )) = {1} |
37 | 36 | infeq1i 9499 | . 2 β’ inf(ran (π β β β¦ sup((πΉ β (π[,)+β)), β*, < )), β*, < ) = inf({1}, β*, < ) |
38 | infsn 9526 | . . 3 β’ (( < Or β* β§ 1 β β*) β inf({1}, β*, < ) = 1) | |
39 | 18, 7, 38 | mp2an 690 | . 2 β’ inf({1}, β*, < ) = 1 |
40 | 14, 37, 39 | 3eqtri 2757 | 1 β’ (lim supβπΉ) = 1 |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1533 β€wtru 1534 β wcel 2098 β wne 2930 Vcvv 3463 β c0 4318 ifcif 4524 {csn 4624 {cpr 4626 class class class wbr 5143 β¦ cmpt 5226 Or wor 5583 ran crn 5673 β cima 5675 βΆwf 6538 βcfv 6542 (class class class)co 7415 supcsup 9461 infcinf 9462 βcr 11135 0cc0 11136 1c1 11137 +βcpnf 11273 β*cxr 11275 < clt 11276 β€ cle 11277 βcn 12240 2c2 12295 [,)cico 13356 lim supclsp 15444 β₯ cdvds 16228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-ico 13360 df-fl 13787 df-ceil 13788 df-limsup 15445 df-dvds 16229 |
This theorem is referenced by: liminfltlimsupex 45231 |
Copyright terms: Public domain | W3C validator |