![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resdifcom | Structured version Visualization version GIF version |
Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
resdifcom | ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 4291 | . 2 ⊢ ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) | |
2 | df-res 5705 | . 2 ⊢ ((𝐴 ∖ 𝐶) ↾ 𝐵) = ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) | |
3 | df-res 5705 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
4 | 3 | difeq1i 4135 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) |
5 | 1, 2, 4 | 3eqtr4ri 2776 | 1 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3481 ∖ cdif 3963 ∩ cin 3965 × cxp 5691 ↾ cres 5695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-in 3973 df-res 5705 |
This theorem is referenced by: setsfun0 17215 cycpmrn 33178 tocyccntz 33179 |
Copyright terms: Public domain | W3C validator |