Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resdifcom | Structured version Visualization version GIF version |
Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
resdifcom | ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 4202 | . 2 ⊢ ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) | |
2 | df-res 5592 | . 2 ⊢ ((𝐴 ∖ 𝐶) ↾ 𝐵) = ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) | |
3 | df-res 5592 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
4 | 3 | difeq1i 4049 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) |
5 | 1, 2, 4 | 3eqtr4ri 2777 | 1 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-res 5592 |
This theorem is referenced by: setsfun0 16801 cycpmrn 31312 tocyccntz 31313 |
Copyright terms: Public domain | W3C validator |