MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifcom Structured version   Visualization version   GIF version

Theorem resdifcom 5971
Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
resdifcom ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ↾ 𝐵)

Proof of Theorem resdifcom
StepHypRef Expression
1 indif1 4247 . 2 ((𝐴𝐶) ∩ (𝐵 × V)) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶)
2 df-res 5652 . 2 ((𝐴𝐶) ↾ 𝐵) = ((𝐴𝐶) ∩ (𝐵 × V))
3 df-res 5652 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
43difeq1i 4087 . 2 ((𝐴𝐵) ∖ 𝐶) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶)
51, 2, 43eqtr4ri 2764 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3450  cdif 3913  cin 3915   × cxp 5638  cres 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-in 3923  df-res 5652
This theorem is referenced by:  setsfun0  17148  cycpmrn  33106  tocyccntz  33107
  Copyright terms: Public domain W3C validator