MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdifcom Structured version   Visualization version   GIF version

Theorem resdifcom 5946
Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
resdifcom ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ↾ 𝐵)

Proof of Theorem resdifcom
StepHypRef Expression
1 indif1 4229 . 2 ((𝐴𝐶) ∩ (𝐵 × V)) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶)
2 df-res 5626 . 2 ((𝐴𝐶) ↾ 𝐵) = ((𝐴𝐶) ∩ (𝐵 × V))
3 df-res 5626 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
43difeq1i 4069 . 2 ((𝐴𝐵) ∖ 𝐶) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶)
51, 2, 43eqtr4ri 2765 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ↾ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  cdif 3894  cin 3896   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-res 5626
This theorem is referenced by:  setsfun0  17083  cycpmrn  33112  tocyccntz  33113
  Copyright terms: Public domain W3C validator