MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsfun0 Structured version   Visualization version   GIF version

Theorem setsfun0 16515
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 16514 is useful for proofs based on isstruct2 16489 which requires Fun (𝐹 ∖ {∅}) for 𝐹 to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))

Proof of Theorem setsfun0
StepHypRef Expression
1 funres 6370 . . . . . 6 (Fun (𝐺 ∖ {∅}) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21adantl 485 . . . . 5 ((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
32adantr 484 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
4 funsng 6379 . . . . 5 ((𝐼𝑈𝐸𝑊) → Fun {⟨𝐼, 𝐸⟩})
54adantl 485 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun {⟨𝐼, 𝐸⟩})
6 dmres 5844 . . . . . . 7 dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅}))
76ineq1i 4138 . . . . . 6 (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩})
8 in32 4151 . . . . . . 7 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅}))
9 incom 4131 . . . . . . . . 9 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩}))
10 disjdif 4382 . . . . . . . . 9 (dom {⟨𝐼, 𝐸⟩} ∩ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ∅
119, 10eqtri 2824 . . . . . . . 8 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1211ineq1i 4138 . . . . . . 7 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) = (∅ ∩ dom (𝐺 ∖ {∅}))
13 0in 4304 . . . . . . 7 (∅ ∩ dom (𝐺 ∖ {∅})) = ∅
148, 12, 133eqtri 2828 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
157, 14eqtri 2824 . . . . 5 (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1615a1i 11 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅)
17 funun 6374 . . . 4 (((Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
183, 5, 16, 17syl21anc 836 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
19 difundir 4210 . . . . 5 (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪ ({⟨𝐼, 𝐸⟩} ∖ {∅}))
20 resdifcom 5841 . . . . . . 7 ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩}))
2120a1i 11 . . . . . 6 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
22 elex 3462 . . . . . . . . . 10 (𝐼𝑈𝐼 ∈ V)
23 elex 3462 . . . . . . . . . 10 (𝐸𝑊𝐸 ∈ V)
2422, 23anim12i 615 . . . . . . . . 9 ((𝐼𝑈𝐸𝑊) → (𝐼 ∈ V ∧ 𝐸 ∈ V))
25 opnz 5333 . . . . . . . . 9 (⟨𝐼, 𝐸⟩ ≠ ∅ ↔ (𝐼 ∈ V ∧ 𝐸 ∈ V))
2624, 25sylibr 237 . . . . . . . 8 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ≠ ∅)
2726adantl 485 . . . . . . 7 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ≠ ∅)
28 disjsn2 4611 . . . . . . 7 (⟨𝐼, 𝐸⟩ ≠ ∅ → ({⟨𝐼, 𝐸⟩} ∩ {∅}) = ∅)
29 disjdif2 4389 . . . . . . 7 (({⟨𝐼, 𝐸⟩} ∩ {∅}) = ∅ → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩})
3027, 28, 293syl 18 . . . . . 6 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩})
3121, 30uneq12d 4094 . . . . 5 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪ ({⟨𝐼, 𝐸⟩} ∖ {∅})) = (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3219, 31syl5eq 2848 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3332funeqd 6350 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) ↔ Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})))
3418, 33mpbird 260 . 2 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}))
35 opex 5324 . . . . . . 7 𝐼, 𝐸⟩ ∈ V
3635a1i 11 . . . . . 6 (Fun (𝐺 ∖ {∅}) → ⟨𝐼, 𝐸⟩ ∈ V)
37 setsvalg 16508 . . . . . 6 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3836, 37sylan2 595 . . . . 5 ((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3938difeq1d 4052 . . . 4 ((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}))
4039funeqd 6350 . . 3 ((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) → (Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ↔ Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅})))
4140adantr 484 . 2 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ↔ Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅})))
4234, 41mpbird 260 1 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  Vcvv 3444  cdif 3881  cun 3882  cin 3883  c0 4246  {csn 4528  cop 4534  dom cdm 5523  cres 5525  Fun wfun 6322  (class class class)co 7139   sSet csts 16477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-res 5535  df-iota 6287  df-fun 6330  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-sets 16486
This theorem is referenced by:  setsn0fun  16516  setsstruct2  16517
  Copyright terms: Public domain W3C validator