Proof of Theorem setsfun0
Step | Hyp | Ref
| Expression |
1 | | funres 6460 |
. . . . . 6
⊢ (Fun
(𝐺 ∖ {∅})
→ Fun ((𝐺 ∖
{∅}) ↾ (V ∖ dom {〈𝐼, 𝐸〉}))) |
2 | 1 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) → Fun ((𝐺 ∖ {∅}) ↾ (V
∖ dom {〈𝐼, 𝐸〉}))) |
3 | 2 | adantr 480 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom
{〈𝐼, 𝐸〉}))) |
4 | | funsng 6469 |
. . . . 5
⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → Fun {〈𝐼, 𝐸〉}) |
5 | 4 | adantl 481 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun {〈𝐼, 𝐸〉}) |
6 | | dmres 5902 |
. . . . . . 7
⊢ dom
((𝐺 ∖ {∅})
↾ (V ∖ dom {〈𝐼, 𝐸〉})) = ((V ∖ dom {〈𝐼, 𝐸〉}) ∩ dom (𝐺 ∖ {∅})) |
7 | 6 | ineq1i 4139 |
. . . . . 6
⊢ (dom
((𝐺 ∖ {∅})
↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∩ dom {〈𝐼, 𝐸〉}) = (((V ∖ dom {〈𝐼, 𝐸〉}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {〈𝐼, 𝐸〉}) |
8 | | in32 4152 |
. . . . . . 7
⊢ (((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom (𝐺 ∖ {∅})) ∩ dom
{〈𝐼, 𝐸〉}) = (((V ∖ dom {〈𝐼, 𝐸〉}) ∩ dom {〈𝐼, 𝐸〉}) ∩ dom (𝐺 ∖ {∅})) |
9 | | disjdifr 4403 |
. . . . . . . 8
⊢ ((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom {〈𝐼, 𝐸〉}) = ∅ |
10 | 9 | ineq1i 4139 |
. . . . . . 7
⊢ (((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom {〈𝐼, 𝐸〉}) ∩ dom (𝐺 ∖ {∅})) = (∅ ∩ dom
(𝐺 ∖
{∅})) |
11 | | 0in 4324 |
. . . . . . 7
⊢ (∅
∩ dom (𝐺 ∖
{∅})) = ∅ |
12 | 8, 10, 11 | 3eqtri 2770 |
. . . . . 6
⊢ (((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom (𝐺 ∖ {∅})) ∩ dom
{〈𝐼, 𝐸〉}) = ∅ |
13 | 7, 12 | eqtri 2766 |
. . . . 5
⊢ (dom
((𝐺 ∖ {∅})
↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∩ dom {〈𝐼, 𝐸〉}) = ∅ |
14 | 13 | a1i 11 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∩ dom {〈𝐼, 𝐸〉}) = ∅) |
15 | | funun 6464 |
. . . 4
⊢ (((Fun
((𝐺 ∖ {∅})
↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∧ Fun {〈𝐼, 𝐸〉}) ∧ (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∩ dom {〈𝐼, 𝐸〉}) = ∅) → Fun (((𝐺 ∖ {∅}) ↾ (V
∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
16 | 3, 5, 14, 15 | syl21anc 834 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
17 | | difundir 4211 |
. . . . 5
⊢ (((𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∖ {∅}) ∪
({〈𝐼, 𝐸〉} ∖
{∅})) |
18 | | resdifcom 5899 |
. . . . . . 7
⊢ ((𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V
∖ dom {〈𝐼, 𝐸〉})) |
19 | 18 | a1i 11 |
. . . . . 6
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → ((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V
∖ dom {〈𝐼, 𝐸〉}))) |
20 | | elex 3440 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑈 → 𝐼 ∈ V) |
21 | | elex 3440 |
. . . . . . . . . 10
⊢ (𝐸 ∈ 𝑊 → 𝐸 ∈ V) |
22 | 20, 21 | anim12i 612 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → (𝐼 ∈ V ∧ 𝐸 ∈ V)) |
23 | | opnz 5382 |
. . . . . . . . 9
⊢
(〈𝐼, 𝐸〉 ≠ ∅ ↔
(𝐼 ∈ V ∧ 𝐸 ∈ V)) |
24 | 22, 23 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → 〈𝐼, 𝐸〉 ≠ ∅) |
25 | 24 | adantl 481 |
. . . . . . 7
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → 〈𝐼, 𝐸〉 ≠ ∅) |
26 | | disjsn2 4645 |
. . . . . . 7
⊢
(〈𝐼, 𝐸〉 ≠ ∅ →
({〈𝐼, 𝐸〉} ∩ {∅}) =
∅) |
27 | | disjdif2 4410 |
. . . . . . 7
⊢
(({〈𝐼, 𝐸〉} ∩ {∅}) =
∅ → ({〈𝐼,
𝐸〉} ∖ {∅})
= {〈𝐼, 𝐸〉}) |
28 | 25, 26, 27 | 3syl 18 |
. . . . . 6
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → ({〈𝐼, 𝐸〉} ∖ {∅}) = {〈𝐼, 𝐸〉}) |
29 | 19, 28 | uneq12d 4094 |
. . . . 5
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∖ {∅}) ∪
({〈𝐼, 𝐸〉} ∖ {∅})) =
(((𝐺 ∖ {∅})
↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
30 | 17, 29 | eqtrid 2790 |
. . . 4
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}) ∖ {∅}) = (((𝐺 ∖ {∅}) ↾ (V
∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
31 | 30 | funeqd 6440 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (Fun (((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}) ∖ {∅}) ↔ Fun
(((𝐺 ∖ {∅})
↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}))) |
32 | 16, 31 | mpbird 256 |
. 2
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}) ∖
{∅})) |
33 | | opex 5373 |
. . . . . . 7
⊢
〈𝐼, 𝐸〉 ∈ V |
34 | 33 | a1i 11 |
. . . . . 6
⊢ (Fun
(𝐺 ∖ {∅})
→ 〈𝐼, 𝐸〉 ∈
V) |
35 | | setsvalg 16795 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑉 ∧ 〈𝐼, 𝐸〉 ∈ V) → (𝐺 sSet 〈𝐼, 𝐸〉) = ((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
36 | 34, 35 | sylan2 592 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) → (𝐺 sSet 〈𝐼, 𝐸〉) = ((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
37 | 36 | difeq1d 4052 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) → ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}) ∖
{∅})) |
38 | 37 | funeqd 6440 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) → (Fun ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅}) ↔ Fun
(((𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}) ∖
{∅}))) |
39 | 38 | adantr 480 |
. 2
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (Fun ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅}) ↔ Fun
(((𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}) ∖
{∅}))) |
40 | 32, 39 | mpbird 256 |
1
⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅})) |