MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsfun0 Structured version   Visualization version   GIF version

Theorem setsfun0 17052
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 17051 is useful for proofs based on isstruct2 17029 which requires Fun (𝐹 ∖ {∅}) for 𝐹 to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))

Proof of Theorem setsfun0
StepHypRef Expression
1 funres 6547 . . . . . 6 (Fun (𝐺 ∖ {∅}) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
21adantl 483 . . . . 5 ((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
32adantr 482 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
4 funsng 6556 . . . . 5 ((𝐼𝑈𝐸𝑊) → Fun {⟨𝐼, 𝐸⟩})
54adantl 483 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun {⟨𝐼, 𝐸⟩})
6 dmres 5963 . . . . . . 7 dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅}))
76ineq1i 4172 . . . . . 6 (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩})
8 in32 4185 . . . . . . 7 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) = (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅}))
9 disjdifr 4436 . . . . . . . 8 ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
109ineq1i 4172 . . . . . . 7 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) = (∅ ∩ dom (𝐺 ∖ {∅}))
11 0in 4357 . . . . . . 7 (∅ ∩ dom (𝐺 ∖ {∅})) = ∅
128, 10, 113eqtri 2765 . . . . . 6 (((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom (𝐺 ∖ {∅})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
137, 12eqtri 2761 . . . . 5 (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅
1413a1i 11 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅)
15 funun 6551 . . . 4 (((Fun ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∧ Fun {⟨𝐼, 𝐸⟩}) ∧ (dom ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∩ dom {⟨𝐼, 𝐸⟩}) = ∅) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
163, 5, 14, 15syl21anc 837 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
17 difundir 4244 . . . . 5 (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪ ({⟨𝐼, 𝐸⟩} ∖ {∅}))
18 resdifcom 5960 . . . . . . 7 ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩}))
1918a1i 11 . . . . . 6 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) = ((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
20 elex 3465 . . . . . . . . . 10 (𝐼𝑈𝐼 ∈ V)
21 elex 3465 . . . . . . . . . 10 (𝐸𝑊𝐸 ∈ V)
2220, 21anim12i 614 . . . . . . . . 9 ((𝐼𝑈𝐸𝑊) → (𝐼 ∈ V ∧ 𝐸 ∈ V))
23 opnz 5434 . . . . . . . . 9 (⟨𝐼, 𝐸⟩ ≠ ∅ ↔ (𝐼 ∈ V ∧ 𝐸 ∈ V))
2422, 23sylibr 233 . . . . . . . 8 ((𝐼𝑈𝐸𝑊) → ⟨𝐼, 𝐸⟩ ≠ ∅)
2524adantl 483 . . . . . . 7 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ⟨𝐼, 𝐸⟩ ≠ ∅)
26 disjsn2 4677 . . . . . . 7 (⟨𝐼, 𝐸⟩ ≠ ∅ → ({⟨𝐼, 𝐸⟩} ∩ {∅}) = ∅)
27 disjdif2 4443 . . . . . . 7 (({⟨𝐼, 𝐸⟩} ∩ {∅}) = ∅ → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩})
2825, 26, 273syl 18 . . . . . 6 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → ({⟨𝐼, 𝐸⟩} ∖ {∅}) = {⟨𝐼, 𝐸⟩})
2919, 28uneq12d 4128 . . . . 5 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∖ {∅}) ∪ ({⟨𝐼, 𝐸⟩} ∖ {∅})) = (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3017, 29eqtrid 2785 . . . 4 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) = (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3130funeqd 6527 . . 3 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}) ↔ Fun (((𝐺 ∖ {∅}) ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩})))
3216, 31mpbird 257 . 2 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}))
33 opex 5425 . . . . . . 7 𝐼, 𝐸⟩ ∈ V
3433a1i 11 . . . . . 6 (Fun (𝐺 ∖ {∅}) → ⟨𝐼, 𝐸⟩ ∈ V)
35 setsvalg 17046 . . . . . 6 ((𝐺𝑉 ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3634, 35sylan2 594 . . . . 5 ((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) → (𝐺 sSet ⟨𝐼, 𝐸⟩) = ((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
3736difeq1d 4085 . . . 4 ((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) = (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅}))
3837funeqd 6527 . . 3 ((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) → (Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ↔ Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅})))
3938adantr 482 . 2 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → (Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ↔ Fun (((𝐺 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) ∖ {∅})))
4032, 39mpbird 257 1 (((𝐺𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼𝑈𝐸𝑊)) → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  Vcvv 3447  cdif 3911  cun 3912  cin 3913  c0 4286  {csn 4590  cop 4596  dom cdm 5637  cres 5639  Fun wfun 6494  (class class class)co 7361   sSet csts 17043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-res 5649  df-iota 6452  df-fun 6502  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-sets 17044
This theorem is referenced by:  setsn0fun  17053  setsstruct2  17054
  Copyright terms: Public domain W3C validator