MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiun1 Structured version   Visualization version   GIF version

Theorem resiun1 5937
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) (Proof shortened by JJ, 25-Aug-2021.)
Assertion
Ref Expression
resiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun1
StepHypRef Expression
1 iunin1 5016 . 2 𝑥𝐴 (𝐵 ∩ (𝐶 × V)) = ( 𝑥𝐴 𝐵 ∩ (𝐶 × V))
2 df-res 5626 . . . 4 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
32a1i 11 . . 3 (𝑥𝐴 → (𝐵𝐶) = (𝐵 ∩ (𝐶 × V)))
43iuneq2i 4959 . 2 𝑥𝐴 (𝐵𝐶) = 𝑥𝐴 (𝐵 ∩ (𝐶 × V))
5 df-res 5626 . 2 ( 𝑥𝐴 𝐵𝐶) = ( 𝑥𝐴 𝐵 ∩ (𝐶 × V))
61, 4, 53eqtr4ri 2775 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3441  cin 3896   ciun 4938   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-in 3904  df-ss 3914  df-iun 4940  df-res 5626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator