MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiun1 Structured version   Visualization version   GIF version

Theorem resiun1 5991
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) (Proof shortened by JJ, 25-Aug-2021.)
Assertion
Ref Expression
resiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun1
StepHypRef Expression
1 iunin1 5065 . 2 𝑥𝐴 (𝐵 ∩ (𝐶 × V)) = ( 𝑥𝐴 𝐵 ∩ (𝐶 × V))
2 df-res 5678 . . . 4 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
32a1i 11 . . 3 (𝑥𝐴 → (𝐵𝐶) = (𝐵 ∩ (𝐶 × V)))
43iuneq2i 5008 . 2 𝑥𝐴 (𝐵𝐶) = 𝑥𝐴 (𝐵 ∩ (𝐶 × V))
5 df-res 5678 . 2 ( 𝑥𝐴 𝐵𝐶) = ( 𝑥𝐴 𝐵 ∩ (𝐶 × V))
61, 4, 53eqtr4ri 2763 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  Vcvv 3466  cin 3939   ciun 4987   × cxp 5664  cres 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-in 3947  df-ss 3957  df-iun 4989  df-res 5678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator