MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiun1 Structured version   Visualization version   GIF version

Theorem resiun1 5986
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) (Proof shortened by JJ, 25-Aug-2021.)
Assertion
Ref Expression
resiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun1
StepHypRef Expression
1 iunin1 5048 . 2 𝑥𝐴 (𝐵 ∩ (𝐶 × V)) = ( 𝑥𝐴 𝐵 ∩ (𝐶 × V))
2 df-res 5666 . . . 4 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
32a1i 11 . . 3 (𝑥𝐴 → (𝐵𝐶) = (𝐵 ∩ (𝐶 × V)))
43iuneq2i 4989 . 2 𝑥𝐴 (𝐵𝐶) = 𝑥𝐴 (𝐵 ∩ (𝐶 × V))
5 df-res 5666 . 2 ( 𝑥𝐴 𝐵𝐶) = ( 𝑥𝐴 𝐵 ∩ (𝐶 × V))
61, 4, 53eqtr4ri 2769 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925   ciun 4967   × cxp 5652  cres 5656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-iun 4969  df-res 5666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator