| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiun1 | Structured version Visualization version GIF version | ||
| Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) (Proof shortened by JJ, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| resiun1 | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunin1 5020 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ (𝐶 × V)) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) | |
| 2 | df-res 5628 | . . . 4 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V))) |
| 4 | 3 | iuneq2i 4963 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ∩ (𝐶 × V)) |
| 5 | df-res 5628 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) | |
| 6 | 1, 4, 5 | 3eqtr4ri 2765 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ∪ ciun 4941 × cxp 5614 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-iun 4943 df-res 5628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |