| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resiun2 | Structured version Visualization version GIF version | ||
| Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
| Ref | Expression |
|---|---|
| resiun2 | ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5658 | . 2 ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) | |
| 2 | df-res 5658 | . . . . 5 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V))) |
| 4 | 3 | iuneq2i 4985 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) |
| 5 | xpiundir 5718 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 × V) = ∪ 𝑥 ∈ 𝐴 (𝐵 × V) | |
| 6 | 5 | ineq2i 4188 | . . . 4 ⊢ (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) = (𝐶 ∩ ∪ 𝑥 ∈ 𝐴 (𝐵 × V)) |
| 7 | iunin2 5043 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) = (𝐶 ∩ ∪ 𝑥 ∈ 𝐴 (𝐵 × V)) | |
| 8 | 6, 7 | eqtr4i 2756 | . . 3 ⊢ (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) |
| 9 | 4, 8 | eqtr4i 2756 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) = (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) |
| 10 | 1, 9 | eqtr4i 2756 | 1 ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∩ cin 3921 ∪ ciun 4963 × cxp 5644 ↾ cres 5648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-iun 4965 df-opab 5178 df-xp 5652 df-res 5658 |
| This theorem is referenced by: fvn0ssdmfun 7053 dprd2da 19980 |
| Copyright terms: Public domain | W3C validator |