Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resiun2 | Structured version Visualization version GIF version |
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
resiun2 | ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5539 | . 2 ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) | |
2 | df-res 5539 | . . . . 5 ⊢ (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V)) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐶 ↾ 𝐵) = (𝐶 ∩ (𝐵 × V))) |
4 | 3 | iuneq2i 4907 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) |
5 | xpiundir 5596 | . . . . 5 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 × V) = ∪ 𝑥 ∈ 𝐴 (𝐵 × V) | |
6 | 5 | ineq2i 4116 | . . . 4 ⊢ (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) = (𝐶 ∩ ∪ 𝑥 ∈ 𝐴 (𝐵 × V)) |
7 | iunin2 4961 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) = (𝐶 ∩ ∪ 𝑥 ∈ 𝐴 (𝐵 × V)) | |
8 | 6, 7 | eqtr4i 2784 | . . 3 ⊢ (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) = ∪ 𝑥 ∈ 𝐴 (𝐶 ∩ (𝐵 × V)) |
9 | 4, 8 | eqtr4i 2784 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) = (𝐶 ∩ (∪ 𝑥 ∈ 𝐴 𝐵 × V)) |
10 | 1, 9 | eqtr4i 2784 | 1 ⊢ (𝐶 ↾ ∪ 𝑥 ∈ 𝐴 𝐵) = ∪ 𝑥 ∈ 𝐴 (𝐶 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3859 ∪ ciun 4886 × cxp 5525 ↾ cres 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-iun 4888 df-opab 5098 df-xp 5533 df-res 5539 |
This theorem is referenced by: fvn0ssdmfun 6838 dprd2da 19237 |
Copyright terms: Public domain | W3C validator |