MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiun2 Structured version   Visualization version   GIF version

Theorem resiun2 6032
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun2 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun2
StepHypRef Expression
1 df-res 5712 . 2 (𝐶 𝑥𝐴 𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
2 df-res 5712 . . . . 5 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
32a1i 11 . . . 4 (𝑥𝐴 → (𝐶𝐵) = (𝐶 ∩ (𝐵 × V)))
43iuneq2i 5036 . . 3 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
5 xpiundir 5771 . . . . 5 ( 𝑥𝐴 𝐵 × V) = 𝑥𝐴 (𝐵 × V)
65ineq2i 4238 . . . 4 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
7 iunin2 5094 . . . 4 𝑥𝐴 (𝐶 ∩ (𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
86, 7eqtr4i 2771 . . 3 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
94, 8eqtr4i 2771 . 2 𝑥𝐴 (𝐶𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
101, 9eqtr4i 2771 1 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975   ciun 5015   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-iun 5017  df-opab 5229  df-xp 5706  df-res 5712
This theorem is referenced by:  fvn0ssdmfun  7110  dprd2da  20088
  Copyright terms: Public domain W3C validator