MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiun2 Structured version   Visualization version   GIF version

Theorem resiun2 5949
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun2 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun2
StepHypRef Expression
1 df-res 5628 . 2 (𝐶 𝑥𝐴 𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
2 df-res 5628 . . . . 5 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
32a1i 11 . . . 4 (𝑥𝐴 → (𝐶𝐵) = (𝐶 ∩ (𝐵 × V)))
43iuneq2i 4963 . . 3 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
5 xpiundir 5688 . . . . 5 ( 𝑥𝐴 𝐵 × V) = 𝑥𝐴 (𝐵 × V)
65ineq2i 4167 . . . 4 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
7 iunin2 5019 . . . 4 𝑥𝐴 (𝐶 ∩ (𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
86, 7eqtr4i 2757 . . 3 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
94, 8eqtr4i 2757 . 2 𝑥𝐴 (𝐶𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
101, 9eqtr4i 2757 1 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  cin 3901   ciun 4941   × cxp 5614  cres 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-iun 4943  df-opab 5154  df-xp 5622  df-res 5628
This theorem is referenced by:  fvn0ssdmfun  7007  dprd2da  19954
  Copyright terms: Public domain W3C validator