MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiun2 Structured version   Visualization version   GIF version

Theorem resiun2 5872
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun2 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun2
StepHypRef Expression
1 df-res 5565 . 2 (𝐶 𝑥𝐴 𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
2 df-res 5565 . . . . 5 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
32a1i 11 . . . 4 (𝑥𝐴 → (𝐶𝐵) = (𝐶 ∩ (𝐵 × V)))
43iuneq2i 4936 . . 3 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
5 xpiundir 5621 . . . . 5 ( 𝑥𝐴 𝐵 × V) = 𝑥𝐴 (𝐵 × V)
65ineq2i 4189 . . . 4 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
7 iunin2 4989 . . . 4 𝑥𝐴 (𝐶 ∩ (𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
86, 7eqtr4i 2851 . . 3 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
94, 8eqtr4i 2851 . 2 𝑥𝐴 (𝐶𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
101, 9eqtr4i 2851 1 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  wcel 2107  Vcvv 3499  cin 3938   ciun 4916   × cxp 5551  cres 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-iun 4918  df-opab 5125  df-xp 5559  df-res 5565
This theorem is referenced by:  fvn0ssdmfun  6837  dprd2da  19086
  Copyright terms: Public domain W3C validator