MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiun2 Structured version   Visualization version   GIF version

Theorem resiun2 5839
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun2 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem resiun2
StepHypRef Expression
1 df-res 5531 . 2 (𝐶 𝑥𝐴 𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
2 df-res 5531 . . . . 5 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
32a1i 11 . . . 4 (𝑥𝐴 → (𝐶𝐵) = (𝐶 ∩ (𝐵 × V)))
43iuneq2i 4902 . . 3 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
5 xpiundir 5587 . . . . 5 ( 𝑥𝐴 𝐵 × V) = 𝑥𝐴 (𝐵 × V)
65ineq2i 4136 . . . 4 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
7 iunin2 4956 . . . 4 𝑥𝐴 (𝐶 ∩ (𝐵 × V)) = (𝐶 𝑥𝐴 (𝐵 × V))
86, 7eqtr4i 2824 . . 3 (𝐶 ∩ ( 𝑥𝐴 𝐵 × V)) = 𝑥𝐴 (𝐶 ∩ (𝐵 × V))
94, 8eqtr4i 2824 . 2 𝑥𝐴 (𝐶𝐵) = (𝐶 ∩ ( 𝑥𝐴 𝐵 × V))
101, 9eqtr4i 2824 1 (𝐶 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  Vcvv 3441  cin 3880   ciun 4881   × cxp 5517  cres 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-iun 4883  df-opab 5093  df-xp 5525  df-res 5531
This theorem is referenced by:  fvn0ssdmfun  6819  dprd2da  19157
  Copyright terms: Public domain W3C validator