MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreuwOLD Structured version   Visualization version   GIF version

Theorem nfreuwOLD 3306
Description: Obsolete version of nfreuw 3305 as of 21-Nov-2024. (Contributed by NM, 30-Oct-2010.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfreuw.1 𝑥𝐴
nfreuw.2 𝑥𝜑
Assertion
Ref Expression
nfreuwOLD 𝑥∃!𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfreuwOLD
StepHypRef Expression
1 df-reu 3072 . . 3 (∃!𝑦𝐴 𝜑 ↔ ∃!𝑦(𝑦𝐴𝜑))
2 nftru 1807 . . . 4 𝑦
3 nfcvd 2908 . . . . . 6 (⊤ → 𝑥𝑦)
4 nfreuw.1 . . . . . . 7 𝑥𝐴
54a1i 11 . . . . . 6 (⊤ → 𝑥𝐴)
63, 5nfeld 2918 . . . . 5 (⊤ → Ⅎ𝑥 𝑦𝐴)
7 nfreuw.2 . . . . . 6 𝑥𝜑
87a1i 11 . . . . 5 (⊤ → Ⅎ𝑥𝜑)
96, 8nfand 1900 . . . 4 (⊤ → Ⅎ𝑥(𝑦𝐴𝜑))
102, 9nfeudw 2591 . . 3 (⊤ → Ⅎ𝑥∃!𝑦(𝑦𝐴𝜑))
111, 10nfxfrd 1856 . 2 (⊤ → Ⅎ𝑥∃!𝑦𝐴 𝜑)
1211mptru 1546 1 𝑥∃!𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 396  wtru 1540  wnf 1786  wcel 2106  ∃!weu 2568  wnfc 2887  ∃!wreu 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569  df-cleq 2730  df-clel 2816  df-nfc 2889  df-reu 3072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator