| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfreuwOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nfreuw 3414 as of 21-Nov-2024. (Contributed by NM, 30-Oct-2010.) (Revised by GG, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfreuwOLD.1 | ⊢ Ⅎ𝑥𝐴 |
| nfreuwOLD.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfreuwOLD | ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 3381 | . . 3 ⊢ (∃!𝑦 ∈ 𝐴 𝜑 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfcvd 2906 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝑦) | |
| 4 | nfreuwOLD.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 6 | 3, 5 | nfeld 2917 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 7 | nfreuwOLD.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 9 | 6, 8 | nfand 1897 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 10 | 2, 9 | nfeudw 2591 | . . 3 ⊢ (⊤ → Ⅎ𝑥∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 11 | 1, 10 | nfxfrd 1854 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑) |
| 12 | 11 | mptru 1547 | 1 ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2108 ∃!weu 2568 Ⅎwnfc 2890 ∃!wreu 3378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 df-cleq 2729 df-clel 2816 df-nfc 2892 df-reu 3381 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |