Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdisjd Structured version   Visualization version   GIF version

Theorem ssdisjd 48539
Description: Subset preserves disjointness. Deduction form of ssdisj 4483. (Contributed by Zhi Wang, 7-Sep-2024.)
Hypotheses
Ref Expression
ssdisjd.1 (𝜑𝐴𝐵)
ssdisjd.2 (𝜑 → (𝐵𝐶) = ∅)
Assertion
Ref Expression
ssdisjd (𝜑 → (𝐴𝐶) = ∅)

Proof of Theorem ssdisjd
StepHypRef Expression
1 ssdisjd.1 . . 3 (𝜑𝐴𝐵)
21ssrind 4265 . 2 (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 ssdisjd.2 . 2 (𝜑 → (𝐵𝐶) = ∅)
4 sseq0 4426 . 2 (((𝐴𝐶) ⊆ (𝐵𝐶) ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)
52, 3, 4syl2anc 583 1 (𝜑 → (𝐴𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3975  wss 3976  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353
This theorem is referenced by:  predisj  48542  iccdisj2  48577  sepdisj  48604  seposep  48605
  Copyright terms: Public domain W3C validator