MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euen1 Structured version   Visualization version   GIF version

Theorem euen1 9032
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
euen1 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)

Proof of Theorem euen1
StepHypRef Expression
1 reuen1 9031 . 2 (∃!𝑥 ∈ V 𝜑 ↔ {𝑥 ∈ V ∣ 𝜑} ≈ 1o)
2 reuv 3500 . 2 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
3 rabab 3502 . . 3 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
43breq1i 5155 . 2 ({𝑥 ∈ V ∣ 𝜑} ≈ 1o ↔ {𝑥𝜑} ≈ 1o)
51, 2, 43bitr3i 301 1 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 205  ∃!weu 2561  {cab 2708  ∃!wreu 3373  {crab 3431  Vcvv 3473   class class class wbr 5148  1oc1o 8465  cen 8942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-1o 8472  df-en 8946
This theorem is referenced by:  euen1b  9033  modom  9250
  Copyright terms: Public domain W3C validator