| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euen1 | Structured version Visualization version GIF version | ||
| Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
| Ref | Expression |
|---|---|
| euen1 | ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuen1 9045 | . 2 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ {𝑥 ∈ V ∣ 𝜑} ≈ 1o) | |
| 2 | reuv 3494 | . 2 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) | |
| 3 | rabab 3496 | . . 3 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} | |
| 4 | 3 | breq1i 5131 | . 2 ⊢ ({𝑥 ∈ V ∣ 𝜑} ≈ 1o ↔ {𝑥 ∣ 𝜑} ≈ 1o) |
| 5 | 1, 2, 4 | 3bitr3i 301 | 1 ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃!weu 2568 {cab 2714 ∃!wreu 3362 {crab 3420 Vcvv 3464 class class class wbr 5124 1oc1o 8478 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1o 8485 df-en 8965 |
| This theorem is referenced by: euen1b 9047 modom 9257 |
| Copyright terms: Public domain | W3C validator |