MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euen1 Structured version   Visualization version   GIF version

Theorem euen1 8703
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
euen1 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)

Proof of Theorem euen1
StepHypRef Expression
1 reuen1 8702 . 2 (∃!𝑥 ∈ V 𝜑 ↔ {𝑥 ∈ V ∣ 𝜑} ≈ 1o)
2 reuv 3434 . 2 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
3 rabab 3436 . . 3 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
43breq1i 5060 . 2 ({𝑥 ∈ V ∣ 𝜑} ≈ 1o ↔ {𝑥𝜑} ≈ 1o)
51, 2, 43bitr3i 304 1 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 209  ∃!weu 2567  {cab 2714  ∃!wreu 3063  {crab 3065  Vcvv 3408   class class class wbr 5053  1oc1o 8195  cen 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-1o 8202  df-en 8627
This theorem is referenced by:  euen1b  8704  modom  8879
  Copyright terms: Public domain W3C validator