MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euen1 Structured version   Visualization version   GIF version

Theorem euen1 9091
Description: Two ways to express "exactly one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
euen1 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)

Proof of Theorem euen1
StepHypRef Expression
1 reuen1 9090 . 2 (∃!𝑥 ∈ V 𝜑 ↔ {𝑥 ∈ V ∣ 𝜑} ≈ 1o)
2 reuv 3518 . 2 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
3 rabab 3520 . . 3 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
43breq1i 5173 . 2 ({𝑥 ∈ V ∣ 𝜑} ≈ 1o ↔ {𝑥𝜑} ≈ 1o)
51, 2, 43bitr3i 301 1 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 206  ∃!weu 2571  {cab 2717  ∃!wreu 3386  {crab 3443  Vcvv 3488   class class class wbr 5166  1oc1o 8515  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1o 8522  df-en 9004
This theorem is referenced by:  euen1b  9092  modom  9307
  Copyright terms: Public domain W3C validator