MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  updjud Structured version   Visualization version   GIF version

Theorem updjud 9623
Description: Universal property of the disjoint union. This theorem shows that the disjoint union, together with the left and right injections df-inl 9591 and df-inr 9592, is the coproduct in the category of sets, see Wikipedia "Coproduct", https://en.wikipedia.org/wiki/Coproduct 9592 (25-Aug-2023). This is a special case of Example 1 of coproducts in Section 10.67 of [Adamek] p. 185. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjud.a (𝜑𝐴𝑉)
updjud.b (𝜑𝐵𝑊)
Assertion
Ref Expression
updjud (𝜑 → ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
Distinct variable groups:   𝐴,   𝐵,   𝐶,   ,𝐹   ,𝐺   𝜑,
Allowed substitution hints:   𝑉()   𝑊()

Proof of Theorem updjud
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 updjud.a . . . . . 6 (𝜑𝐴𝑉)
2 updjud.b . . . . . 6 (𝜑𝐵𝑊)
31, 2jca 511 . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑊))
4 djuex 9597 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
5 mptexg 7079 . . . . 5 ((𝐴𝐵) ∈ V → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∈ V)
63, 4, 53syl 18 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∈ V)
7 feq1 6565 . . . . . . 7 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (:(𝐴𝐵)⟶𝐶 ↔ (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶))
8 coeq1 5755 . . . . . . . 8 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → ( ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)))
98eqeq1d 2740 . . . . . . 7 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (( ∘ (inl ↾ 𝐴)) = 𝐹 ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹))
10 coeq1 5755 . . . . . . . 8 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → ( ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)))
1110eqeq1d 2740 . . . . . . 7 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (( ∘ (inr ↾ 𝐵)) = 𝐺 ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺))
127, 9, 113anbi123d 1434 . . . . . 6 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → ((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)))
13 eqeq1 2742 . . . . . . . 8 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → ( = 𝑘 ↔ (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))
1413imbi2d 340 . . . . . . 7 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘) ↔ ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)))
1514ralbidv 3120 . . . . . 6 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘) ↔ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)))
1612, 15anbi12d 630 . . . . 5 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘)) ↔ (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))))
1716adantl 481 . . . 4 ((𝜑 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))) → (((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘)) ↔ (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))))
18 updjud.f . . . . . 6 (𝜑𝐹:𝐴𝐶)
19 updjud.g . . . . . 6 (𝜑𝐺:𝐵𝐶)
20 eqid 2738 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
2118, 19, 20updjudhf 9620 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶)
2218, 19, 20updjudhcoinlf 9621 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹)
2318, 19, 20updjudhcoinrg 9622 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)
24 simpr 484 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺))
25 eqeq2 2750 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑘 ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) ↔ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹))
26 fvres 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧𝐴 → ((inl ↾ 𝐴)‘𝑧) = (inl‘𝑧))
2726eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧𝐴 → (inl‘𝑧) = ((inl ↾ 𝐴)‘𝑧))
2827eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧𝐴 → (𝑦 = (inl‘𝑧) ↔ 𝑦 = ((inl ↾ 𝐴)‘𝑧)))
2928adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (𝑦 = (inl‘𝑧) ↔ 𝑦 = ((inl ↾ 𝐴)‘𝑧)))
30 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧))
3130ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧))
32 inlresf 9603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
33 ffn 6584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) → (inl ↾ 𝐴) Fn 𝐴)
3432, 33mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) → (inl ↾ 𝐴) Fn 𝐴)
35 fvco2 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inl ↾ 𝐴) Fn 𝐴𝑧𝐴) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)))
3634, 35sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)))
37 fvco2 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inl ↾ 𝐴) Fn 𝐴𝑧𝐴) → ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))
3834, 37sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))
3931, 36, 383eqtr3d 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))
40 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inl ↾ 𝐴)‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)))
41 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inl ↾ 𝐴)‘𝑧) → (𝑘𝑦) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))
4240, 41eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ((inl ↾ 𝐴)‘𝑧) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦) ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)) = (𝑘‘((inl ↾ 𝐴)‘𝑧))))
4339, 42syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (𝑦 = ((inl ↾ 𝐴)‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
4429, 43sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (𝑦 = (inl‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
4544expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
4645ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) → (𝜑 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
4746eqcoms 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) → (𝜑 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
4825, 47syl6bir 253 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → (𝜑 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
4948com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → (𝜑 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
50493ad2ant2 1132 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝜑 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
5150impcom 407 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
5251com12 32 . . . . . . . . . . . . . . . . 17 ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
53523ad2ant2 1132 . . . . . . . . . . . . . . . 16 ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
5453impcom 407 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
5554com12 32 . . . . . . . . . . . . . 14 ((𝑧𝐴𝑦 = (inl‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
5655rexlimiva 3209 . . . . . . . . . . . . 13 (∃𝑧𝐴 𝑦 = (inl‘𝑧) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
57 eqeq2 2750 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑘 ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) ↔ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺))
58 fvres 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧𝐵 → ((inr ↾ 𝐵)‘𝑧) = (inr‘𝑧))
5958eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧𝐵 → (inr‘𝑧) = ((inr ↾ 𝐵)‘𝑧))
6059eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧𝐵 → (𝑦 = (inr‘𝑧) ↔ 𝑦 = ((inr ↾ 𝐵)‘𝑧)))
6160adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (𝑦 = (inr‘𝑧) ↔ 𝑦 = ((inr ↾ 𝐵)‘𝑧)))
62 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧))
6362ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧))
64 inrresf 9605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
65 ffn 6584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) → (inr ↾ 𝐵) Fn 𝐵)
6664, 65mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) → (inr ↾ 𝐵) Fn 𝐵)
67 fvco2 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inr ↾ 𝐵) Fn 𝐵𝑧𝐵) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)))
6866, 67sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)))
69 fvco2 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inr ↾ 𝐵) Fn 𝐵𝑧𝐵) → ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))
7066, 69sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))
7163, 68, 703eqtr3d 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))
72 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inr ↾ 𝐵)‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)))
73 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inr ↾ 𝐵)‘𝑧) → (𝑘𝑦) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))
7472, 73eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ((inr ↾ 𝐵)‘𝑧) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦) ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)) = (𝑘‘((inr ↾ 𝐵)‘𝑧))))
7571, 74syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (𝑦 = ((inr ↾ 𝐵)‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
7661, 75sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (𝑦 = (inr‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
7776expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
7877ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) → (𝜑 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
7978eqcoms 2746 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) → (𝜑 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
8057, 79syl6bir 253 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → (𝜑 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
8180com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → (𝜑 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
82813ad2ant3 1133 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝜑 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
8382impcom 407 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
8483com12 32 . . . . . . . . . . . . . . . . 17 ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
85843ad2ant3 1133 . . . . . . . . . . . . . . . 16 ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
8685impcom 407 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
8786com12 32 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑦 = (inr‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
8887rexlimiva 3209 . . . . . . . . . . . . 13 (∃𝑧𝐵 𝑦 = (inr‘𝑧) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
8956, 88jaoi 853 . . . . . . . . . . . 12 ((∃𝑧𝐴 𝑦 = (inl‘𝑧) ∨ ∃𝑧𝐵 𝑦 = (inr‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
90 djur 9608 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴𝐵) → (∃𝑧𝐴 𝑦 = (inl‘𝑧) ∨ ∃𝑧𝐵 𝑦 = (inr‘𝑧)))
9189, 90syl11 33 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑦 ∈ (𝐴𝐵) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
9291ralrimiv 3106 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ∀𝑦 ∈ (𝐴𝐵)((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))
93 ffn 6584 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) Fn (𝐴𝐵))
94933ad2ant1 1131 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) Fn (𝐴𝐵))
9594adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) Fn (𝐴𝐵))
96 ffn 6584 . . . . . . . . . . . 12 (𝑘:(𝐴𝐵)⟶𝐶𝑘 Fn (𝐴𝐵))
97963ad2ant1 1131 . . . . . . . . . . 11 ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → 𝑘 Fn (𝐴𝐵))
98 eqfnfv 6891 . . . . . . . . . . 11 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) Fn (𝐴𝐵) ∧ 𝑘 Fn (𝐴𝐵)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘 ↔ ∀𝑦 ∈ (𝐴𝐵)((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
9995, 97, 98syl2an 595 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘 ↔ ∀𝑦 ∈ (𝐴𝐵)((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
10092, 99mpbird 256 . . . . . . . . 9 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)
101100ex 412 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))
102101ralrimivw 3108 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))
10324, 102jca 511 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)))
104103ex 412 . . . . 5 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))))
10521, 22, 23, 104mp3and 1462 . . . 4 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)))
1066, 17, 105rspcedvd 3555 . . 3 (𝜑 → ∃ ∈ V ((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘)))
107 feq1 6565 . . . . 5 ( = 𝑘 → (:(𝐴𝐵)⟶𝐶𝑘:(𝐴𝐵)⟶𝐶))
108 coeq1 5755 . . . . . 6 ( = 𝑘 → ( ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)))
109108eqeq1d 2740 . . . . 5 ( = 𝑘 → (( ∘ (inl ↾ 𝐴)) = 𝐹 ↔ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹))
110 coeq1 5755 . . . . . 6 ( = 𝑘 → ( ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)))
111110eqeq1d 2740 . . . . 5 ( = 𝑘 → (( ∘ (inr ↾ 𝐵)) = 𝐺 ↔ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺))
112107, 109, 1113anbi123d 1434 . . . 4 ( = 𝑘 → ((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ↔ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)))
113112reu8 3663 . . 3 (∃! ∈ V (:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ∃ ∈ V ((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘)))
114106, 113sylibr 233 . 2 (𝜑 → ∃! ∈ V (:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
115 reuv 3448 . 2 (∃! ∈ V (:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
116114, 115sylib 217 1 (𝜑 → ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  ∃!weu 2568  wral 3063  wrex 3064  ∃!wreu 3065  Vcvv 3422  c0 4253  ifcif 4456  cmpt 5153  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  1st c1st 7802  2nd c2nd 7803  cdju 9587  inlcinl 9588  inrcinr 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-dju 9590  df-inl 9591  df-inr 9592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator