Step | Hyp | Ref
| Expression |
1 | | updjud.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | | updjud.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
3 | 1, 2 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
4 | | djuex 9597 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
5 | | mptexg 7079 |
. . . . 5
⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∈ V) |
6 | 3, 4, 5 | 3syl 18 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∈ V) |
7 | | feq1 6565 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ↔ (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶)) |
8 | | coeq1 5755 |
. . . . . . . 8
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (ℎ ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))) |
9 | 8 | eqeq1d 2740 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → ((ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹)) |
10 | | coeq1 5755 |
. . . . . . . 8
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (ℎ ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))) |
11 | 10 | eqeq1d 2740 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → ((ℎ ∘ (inr ↾ 𝐵)) = 𝐺 ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) |
12 | 7, 9, 11 | 3anbi123d 1434 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → ((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺))) |
13 | | eqeq1 2742 |
. . . . . . . 8
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (ℎ = 𝑘 ↔ (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)) |
14 | 13 | imbi2d 340 |
. . . . . . 7
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘) ↔ ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘))) |
15 | 14 | ralbidv 3120 |
. . . . . 6
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘) ↔ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘))) |
16 | 12, 15 | anbi12d 630 |
. . . . 5
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘)) ↔ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)))) |
17 | 16 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))) → (((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘)) ↔ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)))) |
18 | | updjud.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
19 | | updjud.g |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
20 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
21 | 18, 19, 20 | updjudhf 9620 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶) |
22 | 18, 19, 20 | updjudhcoinlf 9621 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹) |
23 | 18, 19, 20 | updjudhcoinrg 9622 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) |
24 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) |
25 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑘 ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) ↔ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹)) |
26 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑧) = (inl‘𝑧)) |
27 | 26 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝐴 → (inl‘𝑧) = ((inl ↾ 𝐴)‘𝑧)) |
28 | 27 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝐴 → (𝑦 = (inl‘𝑧) ↔ 𝑦 = ((inl ↾ 𝐴)‘𝑧))) |
29 | 28 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (𝑦 = (inl‘𝑧) ↔ 𝑦 = ((inl ↾ 𝐴)‘𝑧))) |
30 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧)) |
31 | 30 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧)) |
32 | | inlresf 9603 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
33 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) → (inl ↾ 𝐴) Fn 𝐴) |
34 | 32, 33 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) → (inl ↾ 𝐴) Fn 𝐴) |
35 | | fvco2 6847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((inl
↾ 𝐴) Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧))) |
36 | 34, 35 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧))) |
37 | | fvco2 6847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((inl
↾ 𝐴) Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧) = (𝑘‘((inl ↾ 𝐴)‘𝑧))) |
38 | 34, 37 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧) = (𝑘‘((inl ↾ 𝐴)‘𝑧))) |
39 | 31, 36, 38 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧)) = (𝑘‘((inl ↾ 𝐴)‘𝑧))) |
40 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ((inl ↾ 𝐴)‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧))) |
41 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ((inl ↾ 𝐴)‘𝑧) → (𝑘‘𝑦) = (𝑘‘((inl ↾ 𝐴)‘𝑧))) |
42 | 40, 41 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = ((inl ↾ 𝐴)‘𝑧) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦) ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧)) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))) |
43 | 39, 42 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (𝑦 = ((inl ↾ 𝐴)‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
44 | 29, 43 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (𝑦 = (inl‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
45 | 44 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
46 | 45 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) → (𝜑 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
47 | 46 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) → (𝜑 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
48 | 25, 47 | syl6bir 253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → (𝜑 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) |
49 | 48 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → (𝜑 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) |
50 | 49 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝜑 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) |
51 | 50 | impcom 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
52 | 51 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
53 | 52 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
54 | 53 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
55 | 54 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
56 | 55 | rexlimiva 3209 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
𝐴 𝑦 = (inl‘𝑧) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
57 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑘 ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) ↔ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) |
58 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑧) = (inr‘𝑧)) |
59 | 58 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝐵 → (inr‘𝑧) = ((inr ↾ 𝐵)‘𝑧)) |
60 | 59 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝐵 → (𝑦 = (inr‘𝑧) ↔ 𝑦 = ((inr ↾ 𝐵)‘𝑧))) |
61 | 60 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (𝑦 = (inr‘𝑧) ↔ 𝑦 = ((inr ↾ 𝐵)‘𝑧))) |
62 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧)) |
63 | 62 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧)) |
64 | | inrresf 9605 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) |
65 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) → (inr ↾ 𝐵) Fn 𝐵) |
66 | 64, 65 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) → (inr ↾ 𝐵) Fn 𝐵) |
67 | | fvco2 6847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((inr
↾ 𝐵) Fn 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧))) |
68 | 66, 67 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧))) |
69 | | fvco2 6847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((inr
↾ 𝐵) Fn 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧) = (𝑘‘((inr ↾ 𝐵)‘𝑧))) |
70 | 66, 69 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧) = (𝑘‘((inr ↾ 𝐵)‘𝑧))) |
71 | 63, 68, 70 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧)) = (𝑘‘((inr ↾ 𝐵)‘𝑧))) |
72 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ((inr ↾ 𝐵)‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧))) |
73 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ((inr ↾ 𝐵)‘𝑧) → (𝑘‘𝑦) = (𝑘‘((inr ↾ 𝐵)‘𝑧))) |
74 | 72, 73 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = ((inr ↾ 𝐵)‘𝑧) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦) ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧)) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))) |
75 | 71, 74 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (𝑦 = ((inr ↾ 𝐵)‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
76 | 61, 75 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (𝑦 = (inr‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
77 | 76 | expimpd 453 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
78 | 77 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) → (𝜑 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
79 | 78 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) → (𝜑 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
80 | 57, 79 | syl6bir 253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → (𝜑 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) |
81 | 80 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → (𝜑 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) |
82 | 81 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝜑 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) |
83 | 82 | impcom 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
84 | 83 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
85 | 84 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) |
86 | 85 | impcom 407 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
87 | 86 | com12 32 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
88 | 87 | rexlimiva 3209 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
𝐵 𝑦 = (inr‘𝑧) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
89 | 56, 88 | jaoi 853 |
. . . . . . . . . . . 12
⊢
((∃𝑧 ∈
𝐴 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 𝐵 𝑦 = (inr‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
90 | | djur 9608 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐴 ⊔ 𝐵) → (∃𝑧 ∈ 𝐴 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 𝐵 𝑦 = (inr‘𝑧))) |
91 | 89, 90 | syl11 33 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑦 ∈ (𝐴 ⊔ 𝐵) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
92 | 91 | ralrimiv 3106 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ∀𝑦 ∈ (𝐴 ⊔ 𝐵)((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)) |
93 | | ffn 6584 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) Fn (𝐴 ⊔ 𝐵)) |
94 | 93 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) Fn (𝐴 ⊔ 𝐵)) |
95 | 94 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) Fn (𝐴 ⊔ 𝐵)) |
96 | | ffn 6584 |
. . . . . . . . . . . 12
⊢ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 → 𝑘 Fn (𝐴 ⊔ 𝐵)) |
97 | 96 | 3ad2ant1 1131 |
. . . . . . . . . . 11
⊢ ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → 𝑘 Fn (𝐴 ⊔ 𝐵)) |
98 | | eqfnfv 6891 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) Fn (𝐴 ⊔ 𝐵) ∧ 𝑘 Fn (𝐴 ⊔ 𝐵)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘 ↔ ∀𝑦 ∈ (𝐴 ⊔ 𝐵)((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
99 | 95, 97, 98 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘 ↔ ∀𝑦 ∈ (𝐴 ⊔ 𝐵)((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) |
100 | 92, 99 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘) |
101 | 100 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)) |
102 | 101 | ralrimivw 3108 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)) |
103 | 24, 102 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘))) |
104 | 103 | ex 412 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)))) |
105 | 21, 22, 23, 104 | mp3and 1462 |
. . . 4
⊢ (𝜑 → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘))) |
106 | 6, 17, 105 | rspcedvd 3555 |
. . 3
⊢ (𝜑 → ∃ℎ ∈ V ((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘))) |
107 | | feq1 6565 |
. . . . 5
⊢ (ℎ = 𝑘 → (ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ↔ 𝑘:(𝐴 ⊔ 𝐵)⟶𝐶)) |
108 | | coeq1 5755 |
. . . . . 6
⊢ (ℎ = 𝑘 → (ℎ ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴))) |
109 | 108 | eqeq1d 2740 |
. . . . 5
⊢ (ℎ = 𝑘 → ((ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ↔ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹)) |
110 | | coeq1 5755 |
. . . . . 6
⊢ (ℎ = 𝑘 → (ℎ ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵))) |
111 | 110 | eqeq1d 2740 |
. . . . 5
⊢ (ℎ = 𝑘 → ((ℎ ∘ (inr ↾ 𝐵)) = 𝐺 ↔ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) |
112 | 107, 109,
111 | 3anbi123d 1434 |
. . . 4
⊢ (ℎ = 𝑘 → ((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ↔ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺))) |
113 | 112 | reu8 3663 |
. . 3
⊢
(∃!ℎ ∈ V
(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ∃ℎ ∈ V ((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘))) |
114 | 106, 113 | sylibr 233 |
. 2
⊢ (𝜑 → ∃!ℎ ∈ V (ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) |
115 | | reuv 3448 |
. 2
⊢
(∃!ℎ ∈ V
(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ∃!ℎ(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) |
116 | 114, 115 | sylib 217 |
1
⊢ (𝜑 → ∃!ℎ(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) |