MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  updjud Structured version   Visualization version   GIF version

Theorem updjud 9935
Description: Universal property of the disjoint union. This theorem shows that the disjoint union, together with the left and right injections df-inl 9903 and df-inr 9904, is the coproduct in the category of sets, see Wikipedia "Coproduct", https://en.wikipedia.org/wiki/Coproduct 9904 (25-Aug-2023). This is a special case of Example 1 of coproducts in Section 10.67 of [Adamek] p. 185. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (πœ‘ β†’ 𝐹:𝐴⟢𝐢)
updjud.g (πœ‘ β†’ 𝐺:𝐡⟢𝐢)
updjud.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
updjud.b (πœ‘ β†’ 𝐡 ∈ π‘Š)
Assertion
Ref Expression
updjud (πœ‘ β†’ βˆƒ!β„Ž(β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺))
Distinct variable groups:   𝐴,β„Ž   𝐡,β„Ž   𝐢,β„Ž   β„Ž,𝐹   β„Ž,𝐺   πœ‘,β„Ž
Allowed substitution hints:   𝑉(β„Ž)   π‘Š(β„Ž)

Proof of Theorem updjud
Dummy variables π‘˜ π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 updjud.a . . . . . 6 (πœ‘ β†’ 𝐴 ∈ 𝑉)
2 updjud.b . . . . . 6 (πœ‘ β†’ 𝐡 ∈ π‘Š)
31, 2jca 511 . . . . 5 (πœ‘ β†’ (𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š))
4 djuex 9909 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐴 βŠ” 𝐡) ∈ V)
5 mptexg 7225 . . . . 5 ((𝐴 βŠ” 𝐡) ∈ V β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∈ V)
63, 4, 53syl 18 . . . 4 (πœ‘ β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∈ V)
7 feq1 6698 . . . . . . 7 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ↔ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢))
8 coeq1 5857 . . . . . . . 8 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (β„Ž ∘ (inl β†Ύ 𝐴)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)))
98eqeq1d 2733 . . . . . . 7 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ ((β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹))
10 coeq1 5857 . . . . . . . 8 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (β„Ž ∘ (inr β†Ύ 𝐡)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)))
1110eqeq1d 2733 . . . . . . 7 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ ((β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺 ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺))
127, 9, 113anbi123d 1435 . . . . . 6 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ ((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)))
13 eqeq1 2735 . . . . . . . 8 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (β„Ž = π‘˜ ↔ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))
1413imbi2d 340 . . . . . . 7 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜) ↔ ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)))
1514ralbidv 3176 . . . . . 6 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜) ↔ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)))
1612, 15anbi12d 630 . . . . 5 (β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) β†’ (((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜)) ↔ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))))
1716adantl 481 . . . 4 ((πœ‘ ∧ β„Ž = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))) β†’ (((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜)) ↔ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))))
18 updjud.f . . . . . 6 (πœ‘ β†’ 𝐹:𝐴⟢𝐢)
19 updjud.g . . . . . 6 (πœ‘ β†’ 𝐺:𝐡⟢𝐢)
20 eqid 2731 . . . . . 6 (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))
2118, 19, 20updjudhf 9932 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢)
2218, 19, 20updjudhcoinlf 9933 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹)
2318, 19, 20updjudhcoinrg 9934 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)
24 simpr 484 . . . . . . 7 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺))
25 eqeq2 2743 . . . . . . . . . . . . . . . . . . . . . 22 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) ↔ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹))
26 fvres 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ 𝐴 β†’ ((inl β†Ύ 𝐴)β€˜π‘§) = (inlβ€˜π‘§))
2726eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ 𝐴 β†’ (inlβ€˜π‘§) = ((inl β†Ύ 𝐴)β€˜π‘§))
2827eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ 𝐴 β†’ (𝑦 = (inlβ€˜π‘§) ↔ 𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§)))
2928adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (𝑦 = (inlβ€˜π‘§) ↔ 𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§)))
30 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴))β€˜π‘§) = ((π‘˜ ∘ (inl β†Ύ 𝐴))β€˜π‘§))
3130ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴))β€˜π‘§) = ((π‘˜ ∘ (inl β†Ύ 𝐴))β€˜π‘§))
32 inlresf 9915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (inl β†Ύ 𝐴):𝐴⟢(𝐴 βŠ” 𝐡)
33 ffn 6717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((inl β†Ύ 𝐴):𝐴⟢(𝐴 βŠ” 𝐡) β†’ (inl β†Ύ 𝐴) Fn 𝐴)
3432, 33mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) β†’ (inl β†Ύ 𝐴) Fn 𝐴)
35 fvco2 6988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inl β†Ύ 𝐴) Fn 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴))β€˜π‘§) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
3634, 35sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴))β€˜π‘§) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
37 fvco2 6988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inl β†Ύ 𝐴) Fn 𝐴 ∧ 𝑧 ∈ 𝐴) β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴))β€˜π‘§) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
3834, 37sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴))β€˜π‘§) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
3931, 36, 383eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
40 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
41 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§) β†’ (π‘˜β€˜π‘¦) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§)))
4240, 41eqeq12d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦) ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inl β†Ύ 𝐴)β€˜π‘§)) = (π‘˜β€˜((inl β†Ύ 𝐴)β€˜π‘§))))
4339, 42syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (𝑦 = ((inl β†Ύ 𝐴)β€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
4429, 43sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐴) β†’ (𝑦 = (inlβ€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
4544expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) ∧ πœ‘) β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
4645ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)) β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
4746eqcoms 2739 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘˜ ∘ (inl β†Ύ 𝐴)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
4825, 47syl6bir 254 . . . . . . . . . . . . . . . . . . . . 21 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
4948com23 86 . . . . . . . . . . . . . . . . . . . 20 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ (πœ‘ β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
50493ad2ant2 1133 . . . . . . . . . . . . . . . . . . 19 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (πœ‘ β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
5150impcom 407 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
5251com12 32 . . . . . . . . . . . . . . . . 17 ((π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 β†’ ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
53523ad2ant2 1133 . . . . . . . . . . . . . . . 16 ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
5453impcom 407 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
5554com12 32 . . . . . . . . . . . . . 14 ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inlβ€˜π‘§)) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
5655rexlimiva 3146 . . . . . . . . . . . . 13 (βˆƒπ‘§ ∈ 𝐴 𝑦 = (inlβ€˜π‘§) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
57 eqeq2 2743 . . . . . . . . . . . . . . . . . . . . . 22 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) ↔ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺))
58 fvres 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ 𝐡 β†’ ((inr β†Ύ 𝐡)β€˜π‘§) = (inrβ€˜π‘§))
5958eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ 𝐡 β†’ (inrβ€˜π‘§) = ((inr β†Ύ 𝐡)β€˜π‘§))
6059eqeq2d 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ 𝐡 β†’ (𝑦 = (inrβ€˜π‘§) ↔ 𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§)))
6160adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (𝑦 = (inrβ€˜π‘§) ↔ 𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§)))
62 fveq1 6890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡))β€˜π‘§) = ((π‘˜ ∘ (inr β†Ύ 𝐡))β€˜π‘§))
6362ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡))β€˜π‘§) = ((π‘˜ ∘ (inr β†Ύ 𝐡))β€˜π‘§))
64 inrresf 9917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡)
65 ffn 6717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((inr β†Ύ 𝐡):𝐡⟢(𝐴 βŠ” 𝐡) β†’ (inr β†Ύ 𝐡) Fn 𝐡)
6664, 65mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) β†’ (inr β†Ύ 𝐡) Fn 𝐡)
67 fvco2 6988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inr β†Ύ 𝐡) Fn 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡))β€˜π‘§) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
6866, 67sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡))β€˜π‘§) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
69 fvco2 6988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inr β†Ύ 𝐡) Fn 𝐡 ∧ 𝑧 ∈ 𝐡) β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡))β€˜π‘§) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
7066, 69sylan 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡))β€˜π‘§) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
7163, 68, 703eqtr3d 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
72 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
73 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§) β†’ (π‘˜β€˜π‘¦) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§)))
7472, 73eqeq12d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦) ↔ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜((inr β†Ύ 𝐡)β€˜π‘§)) = (π‘˜β€˜((inr β†Ύ 𝐡)β€˜π‘§))))
7571, 74syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (𝑦 = ((inr β†Ύ 𝐡)β€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
7661, 75sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) ∧ 𝑧 ∈ 𝐡) β†’ (𝑦 = (inrβ€˜π‘§) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
7776expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) ∧ πœ‘) β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
7877ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)) β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
7978eqcoms 2739 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘˜ ∘ (inr β†Ύ 𝐡)) = ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
8057, 79syl6bir 254 . . . . . . . . . . . . . . . . . . . . 21 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ (πœ‘ β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
8180com23 86 . . . . . . . . . . . . . . . . . . . 20 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ (πœ‘ β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
82813ad2ant3 1134 . . . . . . . . . . . . . . . . . . 19 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (πœ‘ β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))))
8382impcom 407 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
8483com12 32 . . . . . . . . . . . . . . . . 17 ((π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺 β†’ ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
85843ad2ant3 1134 . . . . . . . . . . . . . . . 16 ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))))
8685impcom 407 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
8786com12 32 . . . . . . . . . . . . . 14 ((𝑧 ∈ 𝐡 ∧ 𝑦 = (inrβ€˜π‘§)) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
8887rexlimiva 3146 . . . . . . . . . . . . 13 (βˆƒπ‘§ ∈ 𝐡 𝑦 = (inrβ€˜π‘§) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
8956, 88jaoi 854 . . . . . . . . . . . 12 ((βˆƒπ‘§ ∈ 𝐴 𝑦 = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 𝑦 = (inrβ€˜π‘§)) β†’ (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
90 djur 9920 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴 βŠ” 𝐡) β†’ (βˆƒπ‘§ ∈ 𝐴 𝑦 = (inlβ€˜π‘§) ∨ βˆƒπ‘§ ∈ 𝐡 𝑦 = (inrβ€˜π‘§)))
9189, 90syl11 33 . . . . . . . . . . 11 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ (𝑦 ∈ (𝐴 βŠ” 𝐡) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
9291ralrimiv 3144 . . . . . . . . . 10 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ βˆ€π‘¦ ∈ (𝐴 βŠ” 𝐡)((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦))
93 ffn 6717 . . . . . . . . . . . . 13 ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) Fn (𝐴 βŠ” 𝐡))
94933ad2ant1 1132 . . . . . . . . . . . 12 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) Fn (𝐴 βŠ” 𝐡))
9594adantl 481 . . . . . . . . . . 11 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) Fn (𝐴 βŠ” 𝐡))
96 ffn 6717 . . . . . . . . . . . 12 (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 β†’ π‘˜ Fn (𝐴 βŠ” 𝐡))
97963ad2ant1 1132 . . . . . . . . . . 11 ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ π‘˜ Fn (𝐴 βŠ” 𝐡))
98 eqfnfv 7032 . . . . . . . . . . 11 (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) Fn (𝐴 βŠ” 𝐡) ∧ π‘˜ Fn (𝐴 βŠ” 𝐡)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜ ↔ βˆ€π‘¦ ∈ (𝐴 βŠ” 𝐡)((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
9995, 97, 98syl2an 595 . . . . . . . . . 10 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜ ↔ βˆ€π‘¦ ∈ (𝐴 βŠ” 𝐡)((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯))))β€˜π‘¦) = (π‘˜β€˜π‘¦)))
10092, 99mpbird 257 . . . . . . . . 9 (((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) ∧ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)
101100ex 412 . . . . . . . 8 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))
102101ralrimivw 3149 . . . . . . 7 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))
10324, 102jca 511 . . . . . 6 ((πœ‘ ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺)) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)))
104103ex 412 . . . . 5 (πœ‘ β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜))))
10521, 22, 23, 104mp3and 1463 . . . 4 (πœ‘ β†’ (((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))):(𝐴 βŠ” 𝐡)⟢𝐢 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ ((π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ (π‘₯ ∈ (𝐴 βŠ” 𝐡) ↦ if((1st β€˜π‘₯) = βˆ…, (πΉβ€˜(2nd β€˜π‘₯)), (πΊβ€˜(2nd β€˜π‘₯)))) = π‘˜)))
1066, 17, 105rspcedvd 3614 . . 3 (πœ‘ β†’ βˆƒβ„Ž ∈ V ((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜)))
107 feq1 6698 . . . . 5 (β„Ž = π‘˜ β†’ (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ↔ π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢))
108 coeq1 5857 . . . . . 6 (β„Ž = π‘˜ β†’ (β„Ž ∘ (inl β†Ύ 𝐴)) = (π‘˜ ∘ (inl β†Ύ 𝐴)))
109108eqeq1d 2733 . . . . 5 (β„Ž = π‘˜ β†’ ((β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ↔ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹))
110 coeq1 5857 . . . . . 6 (β„Ž = π‘˜ β†’ (β„Ž ∘ (inr β†Ύ 𝐡)) = (π‘˜ ∘ (inr β†Ύ 𝐡)))
111110eqeq1d 2733 . . . . 5 (β„Ž = π‘˜ β†’ ((β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺 ↔ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺))
112107, 109, 1113anbi123d 1435 . . . 4 (β„Ž = π‘˜ β†’ ((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ↔ (π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺)))
113112reu8 3729 . . 3 (βˆƒ!β„Ž ∈ V (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ↔ βˆƒβ„Ž ∈ V ((β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ∧ βˆ€π‘˜ ∈ V ((π‘˜:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (π‘˜ ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (π‘˜ ∘ (inr β†Ύ 𝐡)) = 𝐺) β†’ β„Ž = π‘˜)))
114106, 113sylibr 233 . 2 (πœ‘ β†’ βˆƒ!β„Ž ∈ V (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺))
115 reuv 3500 . 2 (βˆƒ!β„Ž ∈ V (β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺) ↔ βˆƒ!β„Ž(β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺))
116114, 115sylib 217 1 (πœ‘ β†’ βˆƒ!β„Ž(β„Ž:(𝐴 βŠ” 𝐡)⟢𝐢 ∧ (β„Ž ∘ (inl β†Ύ 𝐴)) = 𝐹 ∧ (β„Ž ∘ (inr β†Ύ 𝐡)) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆƒ!weu 2561  βˆ€wral 3060  βˆƒwrex 3069  βˆƒ!wreu 3373  Vcvv 3473  βˆ…c0 4322  ifcif 4528   ↦ cmpt 5231   β†Ύ cres 5678   ∘ ccom 5680   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  1st c1st 7977  2nd c2nd 7978   βŠ” cdju 9899  inlcinl 9900  inrcinr 9901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1st 7979  df-2nd 7980  df-1o 8472  df-dju 9902  df-inl 9903  df-inr 9904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator