MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  updjud Structured version   Visualization version   GIF version

Theorem updjud 9401
Description: Universal property of the disjoint union. This theorem shows that the disjoint union, together with the left and right injections df-inl 9369 and df-inr 9370, is the coproduct in the category of sets, see Wikipedia "Coproduct", https://en.wikipedia.org/wiki/Coproduct 9370 (25-Aug-2023). This is a special case of Example 1 of coproducts in Section 10.67 of [Adamek] p. 185. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjud.a (𝜑𝐴𝑉)
updjud.b (𝜑𝐵𝑊)
Assertion
Ref Expression
updjud (𝜑 → ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
Distinct variable groups:   𝐴,   𝐵,   𝐶,   ,𝐹   ,𝐺   𝜑,
Allowed substitution hints:   𝑉()   𝑊()

Proof of Theorem updjud
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 updjud.a . . . . . 6 (𝜑𝐴𝑉)
2 updjud.b . . . . . 6 (𝜑𝐵𝑊)
31, 2jca 515 . . . . 5 (𝜑 → (𝐴𝑉𝐵𝑊))
4 djuex 9375 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
5 mptexg 6980 . . . . 5 ((𝐴𝐵) ∈ V → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∈ V)
63, 4, 53syl 18 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∈ V)
7 feq1 6483 . . . . . . 7 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (:(𝐴𝐵)⟶𝐶 ↔ (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶))
8 coeq1 5702 . . . . . . . 8 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → ( ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)))
98eqeq1d 2760 . . . . . . 7 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (( ∘ (inl ↾ 𝐴)) = 𝐹 ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹))
10 coeq1 5702 . . . . . . . 8 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → ( ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)))
1110eqeq1d 2760 . . . . . . 7 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (( ∘ (inr ↾ 𝐵)) = 𝐺 ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺))
127, 9, 113anbi123d 1433 . . . . . 6 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → ((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)))
13 eqeq1 2762 . . . . . . . 8 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → ( = 𝑘 ↔ (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))
1413imbi2d 344 . . . . . . 7 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘) ↔ ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)))
1514ralbidv 3126 . . . . . 6 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘) ↔ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)))
1612, 15anbi12d 633 . . . . 5 ( = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) → (((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘)) ↔ (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))))
1716adantl 485 . . . 4 ((𝜑 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))) → (((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘)) ↔ (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))))
18 updjud.f . . . . . 6 (𝜑𝐹:𝐴𝐶)
19 updjud.g . . . . . 6 (𝜑𝐺:𝐵𝐶)
20 eqid 2758 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
2118, 19, 20updjudhf 9398 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶)
2218, 19, 20updjudhcoinlf 9399 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹)
2318, 19, 20updjudhcoinrg 9400 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)
24 simpr 488 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺))
25 eqeq2 2770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑘 ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) ↔ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹))
26 fvres 6681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧𝐴 → ((inl ↾ 𝐴)‘𝑧) = (inl‘𝑧))
2726eqcomd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧𝐴 → (inl‘𝑧) = ((inl ↾ 𝐴)‘𝑧))
2827eqeq2d 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧𝐴 → (𝑦 = (inl‘𝑧) ↔ 𝑦 = ((inl ↾ 𝐴)‘𝑧)))
2928adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (𝑦 = (inl‘𝑧) ↔ 𝑦 = ((inl ↾ 𝐴)‘𝑧)))
30 fveq1 6661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧))
3130ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧))
32 inlresf 9381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
33 ffn 6502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) → (inl ↾ 𝐴) Fn 𝐴)
3432, 33mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) → (inl ↾ 𝐴) Fn 𝐴)
35 fvco2 6753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inl ↾ 𝐴) Fn 𝐴𝑧𝐴) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)))
3634, 35sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)))
37 fvco2 6753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inl ↾ 𝐴) Fn 𝐴𝑧𝐴) → ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))
3834, 37sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))
3931, 36, 383eqtr3d 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))
40 fveq2 6662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inl ↾ 𝐴)‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)))
41 fveq2 6662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inl ↾ 𝐴)‘𝑧) → (𝑘𝑦) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))
4240, 41eqeq12d 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ((inl ↾ 𝐴)‘𝑧) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦) ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inl ↾ 𝐴)‘𝑧)) = (𝑘‘((inl ↾ 𝐴)‘𝑧))))
4339, 42syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (𝑦 = ((inl ↾ 𝐴)‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
4429, 43sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧𝐴) → (𝑦 = (inl‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
4544expimpd 457 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
4645ex 416 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) → (𝜑 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
4746eqcoms 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) → (𝜑 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
4825, 47syl6bir 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → (𝜑 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
4948com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → (𝜑 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
50493ad2ant2 1131 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝜑 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
5150impcom 411 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
5251com12 32 . . . . . . . . . . . . . . . . 17 ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
53523ad2ant2 1131 . . . . . . . . . . . . . . . 16 ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
5453impcom 411 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐴𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
5554com12 32 . . . . . . . . . . . . . 14 ((𝑧𝐴𝑦 = (inl‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
5655rexlimiva 3205 . . . . . . . . . . . . 13 (∃𝑧𝐴 𝑦 = (inl‘𝑧) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
57 eqeq2 2770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑘 ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) ↔ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺))
58 fvres 6681 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧𝐵 → ((inr ↾ 𝐵)‘𝑧) = (inr‘𝑧))
5958eqcomd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧𝐵 → (inr‘𝑧) = ((inr ↾ 𝐵)‘𝑧))
6059eqeq2d 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧𝐵 → (𝑦 = (inr‘𝑧) ↔ 𝑦 = ((inr ↾ 𝐵)‘𝑧)))
6160adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (𝑦 = (inr‘𝑧) ↔ 𝑦 = ((inr ↾ 𝐵)‘𝑧)))
62 fveq1 6661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧))
6362ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧))
64 inrresf 9383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
65 ffn 6502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) → (inr ↾ 𝐵) Fn 𝐵)
6664, 65mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) → (inr ↾ 𝐵) Fn 𝐵)
67 fvco2 6753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inr ↾ 𝐵) Fn 𝐵𝑧𝐵) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)))
6866, 67sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)))
69 fvco2 6753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((inr ↾ 𝐵) Fn 𝐵𝑧𝐵) → ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))
7066, 69sylan 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))
7163, 68, 703eqtr3d 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))
72 fveq2 6662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inr ↾ 𝐵)‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)))
73 fveq2 6662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ((inr ↾ 𝐵)‘𝑧) → (𝑘𝑦) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))
7472, 73eqeq12d 2774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ((inr ↾ 𝐵)‘𝑧) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦) ↔ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘((inr ↾ 𝐵)‘𝑧)) = (𝑘‘((inr ↾ 𝐵)‘𝑧))))
7571, 74syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (𝑦 = ((inr ↾ 𝐵)‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
7661, 75sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧𝐵) → (𝑦 = (inr‘𝑧) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
7776expimpd 457 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
7877ex 416 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) → (𝜑 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
7978eqcoms 2766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) → (𝜑 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
8057, 79syl6bir 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → (𝜑 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
8180com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → (𝜑 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
82813ad2ant3 1132 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝜑 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))))
8382impcom 411 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
8483com12 32 . . . . . . . . . . . . . . . . 17 ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
85843ad2ant3 1132 . . . . . . . . . . . . . . . 16 ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))))
8685impcom 411 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧𝐵𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
8786com12 32 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑦 = (inr‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
8887rexlimiva 3205 . . . . . . . . . . . . 13 (∃𝑧𝐵 𝑦 = (inr‘𝑧) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
8956, 88jaoi 854 . . . . . . . . . . . 12 ((∃𝑧𝐴 𝑦 = (inl‘𝑧) ∨ ∃𝑧𝐵 𝑦 = (inr‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
90 djur 9386 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴𝐵) → (∃𝑧𝐴 𝑦 = (inl‘𝑧) ∨ ∃𝑧𝐵 𝑦 = (inr‘𝑧)))
9189, 90syl11 33 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑦 ∈ (𝐴𝐵) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
9291ralrimiv 3112 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ∀𝑦 ∈ (𝐴𝐵)((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦))
93 ffn 6502 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) Fn (𝐴𝐵))
94933ad2ant1 1130 . . . . . . . . . . . 12 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) Fn (𝐴𝐵))
9594adantl 485 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) Fn (𝐴𝐵))
96 ffn 6502 . . . . . . . . . . . 12 (𝑘:(𝐴𝐵)⟶𝐶𝑘 Fn (𝐴𝐵))
97963ad2ant1 1130 . . . . . . . . . . 11 ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → 𝑘 Fn (𝐴𝐵))
98 eqfnfv 6797 . . . . . . . . . . 11 (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) Fn (𝐴𝐵) ∧ 𝑘 Fn (𝐴𝐵)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘 ↔ ∀𝑦 ∈ (𝐴𝐵)((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
9995, 97, 98syl2an 598 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘 ↔ ∀𝑦 ∈ (𝐴𝐵)((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))‘𝑦) = (𝑘𝑦)))
10092, 99mpbird 260 . . . . . . . . 9 (((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)
101100ex 416 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))
102101ralrimivw 3114 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))
10324, 102jca 515 . . . . . 6 ((𝜑 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)))
104103ex 416 . . . . 5 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘))))
10521, 22, 23, 104mp3and 1461 . . . 4 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))):(𝐴𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))) = 𝑘)))
1066, 17, 105rspcedvd 3546 . . 3 (𝜑 → ∃ ∈ V ((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘)))
107 feq1 6483 . . . . 5 ( = 𝑘 → (:(𝐴𝐵)⟶𝐶𝑘:(𝐴𝐵)⟶𝐶))
108 coeq1 5702 . . . . . 6 ( = 𝑘 → ( ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)))
109108eqeq1d 2760 . . . . 5 ( = 𝑘 → (( ∘ (inl ↾ 𝐴)) = 𝐹 ↔ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹))
110 coeq1 5702 . . . . . 6 ( = 𝑘 → ( ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)))
111110eqeq1d 2760 . . . . 5 ( = 𝑘 → (( ∘ (inr ↾ 𝐵)) = 𝐺 ↔ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺))
112107, 109, 1113anbi123d 1433 . . . 4 ( = 𝑘 → ((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ↔ (𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)))
113112reu8 3649 . . 3 (∃! ∈ V (:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ∃ ∈ V ((:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → = 𝑘)))
114106, 113sylibr 237 . 2 (𝜑 → ∃! ∈ V (:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
115 reuv 3437 . 2 (∃! ∈ V (:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
116114, 115sylib 221 1 (𝜑 → ∃!(:(𝐴𝐵)⟶𝐶 ∧ ( ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ( ∘ (inr ↾ 𝐵)) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  ∃!weu 2587  wral 3070  wrex 3071  ∃!wreu 3072  Vcvv 3409  c0 4227  ifcif 4423  cmpt 5115  cres 5529  ccom 5531   Fn wfn 6334  wf 6335  cfv 6339  1st c1st 7696  2nd c2nd 7697  cdju 9365  inlcinl 9366  inrcinr 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-om 7585  df-1st 7698  df-2nd 7699  df-1o 8117  df-dju 9368  df-inl 9369  df-inr 9370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator