| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | updjud.a | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 2 |  | updjud.b | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| 3 | 1, 2 | jca 511 | . . . . 5
⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | 
| 4 |  | djuex 9948 | . . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | 
| 5 |  | mptexg 7241 | . . . . 5
⊢ ((𝐴 ⊔ 𝐵) ∈ V → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∈ V) | 
| 6 | 3, 4, 5 | 3syl 18 | . . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∈ V) | 
| 7 |  | feq1 6716 | . . . . . . 7
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ↔ (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶)) | 
| 8 |  | coeq1 5868 | . . . . . . . 8
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (ℎ ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))) | 
| 9 | 8 | eqeq1d 2739 | . . . . . . 7
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → ((ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹)) | 
| 10 |  | coeq1 5868 | . . . . . . . 8
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (ℎ ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))) | 
| 11 | 10 | eqeq1d 2739 | . . . . . . 7
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → ((ℎ ∘ (inr ↾ 𝐵)) = 𝐺 ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) | 
| 12 | 7, 9, 11 | 3anbi123d 1438 | . . . . . 6
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → ((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺))) | 
| 13 |  | eqeq1 2741 | . . . . . . . 8
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (ℎ = 𝑘 ↔ (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)) | 
| 14 | 13 | imbi2d 340 | . . . . . . 7
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘) ↔ ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘))) | 
| 15 | 14 | ralbidv 3178 | . . . . . 6
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘) ↔ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘))) | 
| 16 | 12, 15 | anbi12d 632 | . . . . 5
⊢ (ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) → (((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘)) ↔ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)))) | 
| 17 | 16 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ ℎ = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))) → (((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘)) ↔ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)))) | 
| 18 |  | updjud.f | . . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) | 
| 19 |  | updjud.g | . . . . . 6
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) | 
| 20 |  | eqid 2737 | . . . . . 6
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) | 
| 21 | 18, 19, 20 | updjudhf 9971 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶) | 
| 22 | 18, 19, 20 | updjudhcoinlf 9972 | . . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹) | 
| 23 | 18, 19, 20 | updjudhcoinrg 9973 | . . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) | 
| 24 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) | 
| 25 |  | eqeq2 2749 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑘 ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) ↔ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹)) | 
| 26 |  | fvres 6925 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑧) = (inl‘𝑧)) | 
| 27 | 26 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝐴 → (inl‘𝑧) = ((inl ↾ 𝐴)‘𝑧)) | 
| 28 | 27 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝐴 → (𝑦 = (inl‘𝑧) ↔ 𝑦 = ((inl ↾ 𝐴)‘𝑧))) | 
| 29 | 28 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (𝑦 = (inl‘𝑧) ↔ 𝑦 = ((inl ↾ 𝐴)‘𝑧))) | 
| 30 |  | fveq1 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧)) | 
| 31 | 30 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧)) | 
| 32 |  | inlresf 9954 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) | 
| 33 |  | ffn 6736 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) → (inl ↾ 𝐴) Fn 𝐴) | 
| 34 | 32, 33 | mp1i 13 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) → (inl ↾ 𝐴) Fn 𝐴) | 
| 35 |  | fvco2 7006 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((inl
↾ 𝐴) Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧))) | 
| 36 | 34, 35 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴))‘𝑧) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧))) | 
| 37 |  | fvco2 7006 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((inl
↾ 𝐴) Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧) = (𝑘‘((inl ↾ 𝐴)‘𝑧))) | 
| 38 | 34, 37 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → ((𝑘 ∘ (inl ↾ 𝐴))‘𝑧) = (𝑘‘((inl ↾ 𝐴)‘𝑧))) | 
| 39 | 31, 36, 38 | 3eqtr3d 2785 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧)) = (𝑘‘((inl ↾ 𝐴)‘𝑧))) | 
| 40 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ((inl ↾ 𝐴)‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧))) | 
| 41 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ((inl ↾ 𝐴)‘𝑧) → (𝑘‘𝑦) = (𝑘‘((inl ↾ 𝐴)‘𝑧))) | 
| 42 | 40, 41 | eqeq12d 2753 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = ((inl ↾ 𝐴)‘𝑧) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦) ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inl ↾ 𝐴)‘𝑧)) = (𝑘‘((inl ↾ 𝐴)‘𝑧)))) | 
| 43 | 39, 42 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (𝑦 = ((inl ↾ 𝐴)‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 44 | 29, 43 | sylbid 240 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐴) → (𝑦 = (inl‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 45 | 44 | expimpd 453 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) ∧ 𝜑) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 46 | 45 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴)) → (𝜑 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 47 | 46 | eqcoms 2745 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∘ (inl ↾ 𝐴)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) → (𝜑 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 48 | 25, 47 | biimtrrdi 254 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → (𝜑 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) | 
| 49 | 48 | com23 86 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 → (𝜑 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) | 
| 50 | 49 | 3ad2ant2 1135 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝜑 → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) | 
| 51 | 50 | impcom 407 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 52 | 51 | com12 32 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 → ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 53 | 52 | 3ad2ant2 1135 | . . . . . . . . . . . . . . . 16
⊢ ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 54 | 53 | impcom 407 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 55 | 54 | com12 32 | . . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 56 | 55 | rexlimiva 3147 | . . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
𝐴 𝑦 = (inl‘𝑧) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 57 |  | eqeq2 2749 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑘 ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) ↔ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) | 
| 58 |  | fvres 6925 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ 𝐵 → ((inr ↾ 𝐵)‘𝑧) = (inr‘𝑧)) | 
| 59 | 58 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝐵 → (inr‘𝑧) = ((inr ↾ 𝐵)‘𝑧)) | 
| 60 | 59 | eqeq2d 2748 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ 𝐵 → (𝑦 = (inr‘𝑧) ↔ 𝑦 = ((inr ↾ 𝐵)‘𝑧))) | 
| 61 | 60 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (𝑦 = (inr‘𝑧) ↔ 𝑦 = ((inr ↾ 𝐵)‘𝑧))) | 
| 62 |  | fveq1 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧)) | 
| 63 | 62 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧)) | 
| 64 |  | inrresf 9956 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) | 
| 65 |  | ffn 6736 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((inr
↾ 𝐵):𝐵⟶(𝐴 ⊔ 𝐵) → (inr ↾ 𝐵) Fn 𝐵) | 
| 66 | 64, 65 | mp1i 13 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) → (inr ↾ 𝐵) Fn 𝐵) | 
| 67 |  | fvco2 7006 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((inr
↾ 𝐵) Fn 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧))) | 
| 68 | 66, 67 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵))‘𝑧) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧))) | 
| 69 |  | fvco2 7006 | . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((inr
↾ 𝐵) Fn 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧) = (𝑘‘((inr ↾ 𝐵)‘𝑧))) | 
| 70 | 66, 69 | sylan 580 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → ((𝑘 ∘ (inr ↾ 𝐵))‘𝑧) = (𝑘‘((inr ↾ 𝐵)‘𝑧))) | 
| 71 | 63, 68, 70 | 3eqtr3d 2785 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧)) = (𝑘‘((inr ↾ 𝐵)‘𝑧))) | 
| 72 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ((inr ↾ 𝐵)‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧))) | 
| 73 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 = ((inr ↾ 𝐵)‘𝑧) → (𝑘‘𝑦) = (𝑘‘((inr ↾ 𝐵)‘𝑧))) | 
| 74 | 72, 73 | eqeq12d 2753 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 = ((inr ↾ 𝐵)‘𝑧) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦) ↔ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘((inr ↾ 𝐵)‘𝑧)) = (𝑘‘((inr ↾ 𝐵)‘𝑧)))) | 
| 75 | 71, 74 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (𝑦 = ((inr ↾ 𝐵)‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 76 | 61, 75 | sylbid 240 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) ∧ 𝑧 ∈ 𝐵) → (𝑦 = (inr‘𝑧) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 77 | 76 | expimpd 453 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) ∧ 𝜑) → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 78 | 77 | ex 412 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵)) → (𝜑 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 79 | 78 | eqcoms 2745 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∘ (inr ↾ 𝐵)) = ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) → (𝜑 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 80 | 57, 79 | biimtrrdi 254 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → (𝜑 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) | 
| 81 | 80 | com23 86 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺 → (𝜑 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) | 
| 82 | 81 | 3ad2ant3 1136 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝜑 → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))))) | 
| 83 | 82 | impcom 407 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 84 | 83 | com12 32 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∘ (inr ↾ 𝐵)) = 𝐺 → ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 85 | 84 | 3ad2ant3 1136 | . . . . . . . . . . . . . . . 16
⊢ ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)))) | 
| 86 | 85 | impcom 407 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 87 | 86 | com12 32 | . . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑦 = (inr‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 88 | 87 | rexlimiva 3147 | . . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
𝐵 𝑦 = (inr‘𝑧) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 89 | 56, 88 | jaoi 858 | . . . . . . . . . . . 12
⊢
((∃𝑧 ∈
𝐴 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 𝐵 𝑦 = (inr‘𝑧)) → (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 90 |  | djur 9959 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐴 ⊔ 𝐵) → (∃𝑧 ∈ 𝐴 𝑦 = (inl‘𝑧) ∨ ∃𝑧 ∈ 𝐵 𝑦 = (inr‘𝑧))) | 
| 91 | 89, 90 | syl11 33 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑦 ∈ (𝐴 ⊔ 𝐵) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 92 | 91 | ralrimiv 3145 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ∀𝑦 ∈ (𝐴 ⊔ 𝐵)((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦)) | 
| 93 |  | ffn 6736 | . . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) Fn (𝐴 ⊔ 𝐵)) | 
| 94 | 93 | 3ad2ant1 1134 | . . . . . . . . . . . 12
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) Fn (𝐴 ⊔ 𝐵)) | 
| 95 | 94 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) Fn (𝐴 ⊔ 𝐵)) | 
| 96 |  | ffn 6736 | . . . . . . . . . . . 12
⊢ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 → 𝑘 Fn (𝐴 ⊔ 𝐵)) | 
| 97 | 96 | 3ad2ant1 1134 | . . . . . . . . . . 11
⊢ ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → 𝑘 Fn (𝐴 ⊔ 𝐵)) | 
| 98 |  | eqfnfv 7051 | . . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) Fn (𝐴 ⊔ 𝐵) ∧ 𝑘 Fn (𝐴 ⊔ 𝐵)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘 ↔ ∀𝑦 ∈ (𝐴 ⊔ 𝐵)((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 99 | 95, 97, 98 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘 ↔ ∀𝑦 ∈ (𝐴 ⊔ 𝐵)((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))‘𝑦) = (𝑘‘𝑦))) | 
| 100 | 92, 99 | mpbird 257 | . . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) ∧ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘) | 
| 101 | 100 | ex 412 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)) | 
| 102 | 101 | ralrimivw 3150 | . . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)) | 
| 103 | 24, 102 | jca 511 | . . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺)) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘))) | 
| 104 | 103 | ex 412 | . . . . 5
⊢ (𝜑 → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘)))) | 
| 105 | 21, 22, 23, 104 | mp3and 1466 | . . . 4
⊢ (𝜑 → (((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))):(𝐴 ⊔ 𝐵)⟶𝐶 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inl ↾ 𝐴)) = 𝐹 ∧ ((𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) = 𝑘))) | 
| 106 | 6, 17, 105 | rspcedvd 3624 | . . 3
⊢ (𝜑 → ∃ℎ ∈ V ((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘))) | 
| 107 |  | feq1 6716 | . . . . 5
⊢ (ℎ = 𝑘 → (ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ↔ 𝑘:(𝐴 ⊔ 𝐵)⟶𝐶)) | 
| 108 |  | coeq1 5868 | . . . . . 6
⊢ (ℎ = 𝑘 → (ℎ ∘ (inl ↾ 𝐴)) = (𝑘 ∘ (inl ↾ 𝐴))) | 
| 109 | 108 | eqeq1d 2739 | . . . . 5
⊢ (ℎ = 𝑘 → ((ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ↔ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹)) | 
| 110 |  | coeq1 5868 | . . . . . 6
⊢ (ℎ = 𝑘 → (ℎ ∘ (inr ↾ 𝐵)) = (𝑘 ∘ (inr ↾ 𝐵))) | 
| 111 | 110 | eqeq1d 2739 | . . . . 5
⊢ (ℎ = 𝑘 → ((ℎ ∘ (inr ↾ 𝐵)) = 𝐺 ↔ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺)) | 
| 112 | 107, 109,
111 | 3anbi123d 1438 | . . . 4
⊢ (ℎ = 𝑘 → ((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ↔ (𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺))) | 
| 113 | 112 | reu8 3739 | . . 3
⊢
(∃!ℎ ∈ V
(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ∃ℎ ∈ V ((ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ∧ ∀𝑘 ∈ V ((𝑘:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (𝑘 ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (𝑘 ∘ (inr ↾ 𝐵)) = 𝐺) → ℎ = 𝑘))) | 
| 114 | 106, 113 | sylibr 234 | . 2
⊢ (𝜑 → ∃!ℎ ∈ V (ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) | 
| 115 |  | reuv 3510 | . 2
⊢
(∃!ℎ ∈ V
(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺) ↔ ∃!ℎ(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) | 
| 116 | 114, 115 | sylib 218 | 1
⊢ (𝜑 → ∃!ℎ(ℎ:(𝐴 ⊔ 𝐵)⟶𝐶 ∧ (ℎ ∘ (inl ↾ 𝐴)) = 𝐹 ∧ (ℎ ∘ (inr ↾ 𝐵)) = 𝐺)) |