![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reuxfr | Structured version Visualization version GIF version |
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Use reuhyp 5093 to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
reuxfr.1 | ⊢ (𝑦 ∈ 𝐵 → 𝐴 ∈ 𝐵) |
reuxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐵 𝑥 = 𝐴) |
reuxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
reuxfr | ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr.1 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → 𝐴 ∈ 𝐵) | |
2 | 1 | adantl 474 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
3 | reuxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃!𝑦 ∈ 𝐵 𝑥 = 𝐴) | |
4 | 3 | adantl 474 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 𝑥 = 𝐴) |
5 | reuxfr.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 2, 4, 5 | reuxfrd 5090 | . 2 ⊢ (⊤ → (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 𝜓)) |
7 | 6 | mptru 1661 | 1 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ⊤wtru 1654 ∈ wcel 2157 ∃!wreu 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-v 3386 |
This theorem is referenced by: zmax 12027 rebtwnz 12029 |
Copyright terms: Public domain | W3C validator |