| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuxfr1d | Structured version Visualization version GIF version | ||
| Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfr1ds 3739. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
| Ref | Expression |
|---|---|
| reuxfr1d.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| reuxfr1d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| reuxfr1d.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| reuxfr1d | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfr1d.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 2 | reurex 3367 | . . . . . 6 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| 4 | 3 | biantrurd 532 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓))) |
| 5 | r19.41v 3176 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓)) | |
| 6 | reuxfr1d.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 7 | 6 | pm5.32da 579 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝜓) ↔ (𝑥 = 𝐴 ∧ 𝜒))) |
| 8 | 7 | rexbidv 3166 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
| 9 | 5, 8 | bitr3id 285 | . . . . 5 ⊢ (𝜑 → ((∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
| 11 | 4, 10 | bitrd 279 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
| 12 | 11 | reubidva 3379 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
| 13 | reuxfr1d.1 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
| 14 | reurmo 3366 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 15 | 1, 14 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| 16 | 13, 15 | reuxfrd 3736 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒) ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| 17 | 12, 16 | bitrd 279 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∃!wreu 3361 ∃*wrmo 3362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 |
| This theorem is referenced by: reuxfr1ds 3739 rmoxfrd 32440 fcnvgreu 32618 reuf1odnf 47077 reuf1od 47078 |
| Copyright terms: Public domain | W3C validator |