Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reuxfr1d | Structured version Visualization version GIF version |
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfr1ds 3681. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
Ref | Expression |
---|---|
reuxfr1d.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
reuxfr1d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
reuxfr1d.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
reuxfr1d | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr1d.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
2 | reurex 3352 | . . . . . 6 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
4 | 3 | biantrurd 532 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓))) |
5 | r19.41v 3273 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓)) | |
6 | reuxfr1d.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
7 | 6 | pm5.32da 578 | . . . . . . 7 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝜓) ↔ (𝑥 = 𝐴 ∧ 𝜒))) |
8 | 7 | rexbidv 3225 | . . . . . 6 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
9 | 5, 8 | bitr3id 284 | . . . . 5 ⊢ (𝜑 → ((∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∃𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
11 | 4, 10 | bitrd 278 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝜓 ↔ ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
12 | 11 | reubidva 3314 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒))) |
13 | reuxfr1d.1 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
14 | reurmo 3354 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
15 | 1, 14 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑦 ∈ 𝐶 𝑥 = 𝐴) |
16 | 13, 15 | reuxfrd 3678 | . 2 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 (𝑥 = 𝐴 ∧ 𝜒) ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
17 | 12, 16 | bitrd 278 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∃!wreu 3065 ∃*wrmo 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 |
This theorem is referenced by: reuxfr1ds 3681 rmoxfrd 30742 fcnvgreu 30912 reuf1odnf 44486 reuf1od 44487 |
Copyright terms: Public domain | W3C validator |