MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuxfr1d Structured version   Visualization version   GIF version

Theorem reuxfr1d 3680
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Cf. reuxfr1ds 3681. (Contributed by Thierry Arnoux, 7-Apr-2017.)
Hypotheses
Ref Expression
reuxfr1d.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
reuxfr1d.2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
reuxfr1d.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
reuxfr1d (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem reuxfr1d
StepHypRef Expression
1 reuxfr1d.2 . . . . . 6 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
2 reurex 3352 . . . . . 6 (∃!𝑦𝐶 𝑥 = 𝐴 → ∃𝑦𝐶 𝑥 = 𝐴)
31, 2syl 17 . . . . 5 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
43biantrurd 532 . . . 4 ((𝜑𝑥𝐵) → (𝜓 ↔ (∃𝑦𝐶 𝑥 = 𝐴𝜓)))
5 r19.41v 3273 . . . . . 6 (∃𝑦𝐶 (𝑥 = 𝐴𝜓) ↔ (∃𝑦𝐶 𝑥 = 𝐴𝜓))
6 reuxfr1d.3 . . . . . . . 8 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
76pm5.32da 578 . . . . . . 7 (𝜑 → ((𝑥 = 𝐴𝜓) ↔ (𝑥 = 𝐴𝜒)))
87rexbidv 3225 . . . . . 6 (𝜑 → (∃𝑦𝐶 (𝑥 = 𝐴𝜓) ↔ ∃𝑦𝐶 (𝑥 = 𝐴𝜒)))
95, 8bitr3id 284 . . . . 5 (𝜑 → ((∃𝑦𝐶 𝑥 = 𝐴𝜓) ↔ ∃𝑦𝐶 (𝑥 = 𝐴𝜒)))
109adantr 480 . . . 4 ((𝜑𝑥𝐵) → ((∃𝑦𝐶 𝑥 = 𝐴𝜓) ↔ ∃𝑦𝐶 (𝑥 = 𝐴𝜒)))
114, 10bitrd 278 . . 3 ((𝜑𝑥𝐵) → (𝜓 ↔ ∃𝑦𝐶 (𝑥 = 𝐴𝜒)))
1211reubidva 3314 . 2 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜒)))
13 reuxfr1d.1 . . 3 ((𝜑𝑦𝐶) → 𝐴𝐵)
14 reurmo 3354 . . . 4 (∃!𝑦𝐶 𝑥 = 𝐴 → ∃*𝑦𝐶 𝑥 = 𝐴)
151, 14syl 17 . . 3 ((𝜑𝑥𝐵) → ∃*𝑦𝐶 𝑥 = 𝐴)
1613, 15reuxfrd 3678 . 2 (𝜑 → (∃!𝑥𝐵𝑦𝐶 (𝑥 = 𝐴𝜒) ↔ ∃!𝑦𝐶 𝜒))
1712, 16bitrd 278 1 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071
This theorem is referenced by:  reuxfr1ds  3681  rmoxfrd  30742  fcnvgreu  30912  reuf1odnf  44486  reuf1od  44487
  Copyright terms: Public domain W3C validator