Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrescn Structured version   Visualization version   GIF version

Theorem climrescn 43260
Description: A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climrescn.m (𝜑𝑀 ∈ ℤ)
climrescn.z 𝑍 = (ℤ𝑀)
climrescn.f (𝜑𝐹 Fn 𝑍)
climrescn.c (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climrescn (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
Distinct variable groups:   𝑗,𝐹   𝑗,𝑍
Allowed substitution hints:   𝜑(𝑗)   𝑀(𝑗)

Proof of Theorem climrescn
Dummy variables 𝑖 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1921 . . . . . 6 𝑘(𝜑𝑖𝑍)
2 nfra1 3145 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)
31, 2nfan 1906 . . . . 5 𝑘((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
4 climrescn.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
54uztrn2 12600 . . . . . . . . 9 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
65adantll 711 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
7 climrescn.f . . . . . . . . . 10 (𝜑𝐹 Fn 𝑍)
87fndmd 6536 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝑍)
98ad2antrr 723 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → dom 𝐹 = 𝑍)
106, 9eleqtrrd 2844 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘 ∈ dom 𝐹)
1110adantlr 712 . . . . . 6 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘 ∈ dom 𝐹)
12 rspa 3133 . . . . . . . . 9 ((∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
1312adantll 711 . . . . . . . 8 (((𝑖𝑍 ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
1413simpld 495 . . . . . . 7 (((𝑖𝑍 ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) ∈ ℂ)
1514adantlll 715 . . . . . 6 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) ∈ ℂ)
1611, 15jca 512 . . . . 5 ((((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ))
173, 16ralrimia 3429 . . . 4 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ))
18 fnfun 6531 . . . . . 6 (𝐹 Fn 𝑍 → Fun 𝐹)
19 ffvresb 6995 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
207, 18, 193syl 18 . . . . 5 (𝜑 → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
2120ad2antrr 723 . . . 4 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → ((𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ ↔ ∀𝑘 ∈ (ℤ𝑖)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℂ)))
2217, 21mpbird 256 . . 3 (((𝜑𝑖𝑍) ∧ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)) → (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
23 breq2 5083 . . . . . . 7 (𝑥 = 1 → ((abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥 ↔ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
2423anbi2d 629 . . . . . 6 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
2524rexralbidv 3232 . . . . 5 (𝑥 = 1 → (∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
26 climrescn.c . . . . . . . 8 (𝜑𝐹 ∈ dom ⇝ )
27 climdm 15261 . . . . . . . 8 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
2826, 27sylib 217 . . . . . . 7 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
29 eqidd 2741 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
3026, 29clim 15201 . . . . . . 7 (𝜑 → (𝐹 ⇝ ( ⇝ ‘𝐹) ↔ (( ⇝ ‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥))))
3128, 30mpbid 231 . . . . . 6 (𝜑 → (( ⇝ ‘𝐹) ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥)))
3231simprd 496 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 𝑥))
33 1rp 12733 . . . . . 6 1 ∈ ℝ+
3433a1i 11 . . . . 5 (𝜑 → 1 ∈ ℝ+)
3525, 32, 34rspcdva 3563 . . . 4 (𝜑 → ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
36 climrescn.m . . . . 5 (𝜑𝑀 ∈ ℤ)
374rexuz3 15058 . . . . 5 (𝑀 ∈ ℤ → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
3836, 37syl 17 . . . 4 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1) ↔ ∃𝑖 ∈ ℤ ∀𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1)))
3935, 38mpbird 256 . . 3 (𝜑 → ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − ( ⇝ ‘𝐹))) < 1))
4022, 39reximddv3 42670 . 2 (𝜑 → ∃𝑖𝑍 (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
41 fveq2 6771 . . . . 5 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
4241reseq2d 5890 . . . 4 (𝑗 = 𝑖 → (𝐹 ↾ (ℤ𝑗)) = (𝐹 ↾ (ℤ𝑖)))
4342, 41feq12d 6586 . . 3 (𝑗 = 𝑖 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ ↔ (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ))
4443cbvrexvw 3382 . 2 (∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ ↔ ∃𝑖𝑍 (𝐹 ↾ (ℤ𝑖)):(ℤ𝑖)⟶ℂ)
4540, 44sylibr 233 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067   class class class wbr 5079  dom cdm 5590  cres 5592  Fun wfun 6426   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7271  cc 10870  1c1 10873   < clt 11010  cmin 11205  cz 12319  cuz 12581  +crp 12729  abscabs 14943  cli 15191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195
This theorem is referenced by:  climxlim2  43358
  Copyright terms: Public domain W3C validator