Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflbuz2 Structured version   Visualization version   GIF version

Theorem liminflbuz2 43246
Description: A sequence with values in the extended reals, and with liminf that is not -∞, is eventually greater than -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflbuz2.1 𝑗𝜑
liminflbuz2.2 𝑗𝐹
liminflbuz2.3 (𝜑𝑀 ∈ ℤ)
liminflbuz2.4 𝑍 = (ℤ𝑀)
liminflbuz2.5 (𝜑𝐹:𝑍⟶ℝ*)
liminflbuz2.6 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflbuz2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Distinct variable groups:   𝑘,𝐹   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem liminflbuz2
StepHypRef Expression
1 liminflbuz2.1 . . . . 5 𝑗𝜑
2 nfv 1918 . . . . 5 𝑗 𝑘𝑍
31, 2nfan 1903 . . . 4 𝑗(𝜑𝑘𝑍)
4 simpll 763 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
5 liminflbuz2.4 . . . . . . 7 𝑍 = (ℤ𝑀)
65uztrn2 12530 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
76adantll 710 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
8 liminflbuz2.5 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
98ffvelrnda 6943 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
109adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
11 mnfxr 10963 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1211a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
13 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -∞ < (𝐹𝑗))
1410, 12, 13xrnltled 10974 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≤ -∞)
15 xlemnf 12830 . . . . . . . . . . 11 ((𝐹𝑗) ∈ ℝ* → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1610, 15syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1714, 16mpbid 231 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) = -∞)
18 xnegeq 12870 . . . . . . . . . 10 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = -𝑒-∞)
19 xnegmnf 12873 . . . . . . . . . 10 -𝑒-∞ = +∞
2018, 19eqtrdi 2795 . . . . . . . . 9 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = +∞)
2117, 20syl 17 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
2221adantlr 711 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
23 neneq 2948 . . . . . . . 8 (-𝑒(𝐹𝑗) ≠ +∞ → ¬ -𝑒(𝐹𝑗) = +∞)
2423ad2antlr 723 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -𝑒(𝐹𝑗) = +∞)
2522, 24condan 814 . . . . . 6 (((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) → -∞ < (𝐹𝑗))
2625ex 412 . . . . 5 ((𝜑𝑗𝑍) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
274, 7, 26syl2anc 583 . . . 4 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
283, 27ralimdaa 3140 . . 3 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞ → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
2928imp 406 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞) → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
309xnegcld 12963 . . . . . . . . 9 ((𝜑𝑗𝑍) → -𝑒(𝐹𝑗) ∈ ℝ*)
3130adantr 480 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ∈ ℝ*)
32 pnfxr 10960 . . . . . . . . 9 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → +∞ ∈ ℝ*)
34 eqidd 2739 . . . . . . . . . . 11 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
3534, 30fvmpt2d 6870 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3635adantr 480 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
37 simpr 484 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
3836, 37eqbrtrrd 5094 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) < +∞)
3931, 33, 38xrltned 42786 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ≠ +∞)
4039ex 412 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
414, 7, 40syl2anc 583 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
423, 41ralimdaa 3140 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞))
4342imp 406 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
44 nfmpt1 5178 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
45 liminflbuz2.3 . . . 4 (𝜑𝑀 ∈ ℤ)
461, 30fmptd2f 42667 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
475fvexi 6770 . . . . . . . . . . 11 𝑍 ∈ V
4847a1i 11 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
498, 48fexd 7085 . . . . . . . . 9 (𝜑𝐹 ∈ V)
5049liminfcld 43201 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
5150xnegnegd 42872 . . . . . . 7 (𝜑 → -𝑒-𝑒(lim inf‘𝐹) = (lim inf‘𝐹))
52 liminflbuz2.2 . . . . . . . 8 𝑗𝐹
531, 52, 45, 5, 8liminfvaluz3 43227 . . . . . . 7 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
5451, 53eqtr2d 2779 . . . . . 6 (𝜑 → -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹))
5548mptexd 7082 . . . . . . . 8 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
5655limsupcld 43121 . . . . . . 7 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
5750xnegcld 12963 . . . . . . 7 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ*)
58 xneg11 12878 . . . . . . 7 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
5956, 57, 58syl2anc 583 . . . . . 6 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
6054, 59mpbid 231 . . . . 5 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹))
61 nne 2946 . . . . . . 7 (¬ -𝑒(lim inf‘𝐹) ≠ +∞ ↔ -𝑒(lim inf‘𝐹) = +∞)
6251eqcomd 2744 . . . . . . . . 9 (𝜑 → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
6362adantr 480 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
64 xnegeq 12870 . . . . . . . . 9 (-𝑒(lim inf‘𝐹) = +∞ → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
6564adantl 481 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
66 xnegpnf 12872 . . . . . . . . 9 -𝑒+∞ = -∞
6766a1i 11 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒+∞ = -∞)
6863, 65, 673eqtrd 2782 . . . . . . 7 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -∞)
6961, 68sylan2b 593 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → (lim inf‘𝐹) = -∞)
70 liminflbuz2.6 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ≠ -∞)
7170neneqd 2947 . . . . . . 7 (𝜑 → ¬ (lim inf‘𝐹) = -∞)
7271adantr 480 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → ¬ (lim inf‘𝐹) = -∞)
7369, 72condan 814 . . . . 5 (𝜑 → -𝑒(lim inf‘𝐹) ≠ +∞)
7460, 73eqnetrd 3010 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ≠ +∞)
751, 44, 45, 5, 46, 74limsupubuz2 43244 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
7643, 75reximddv3 42589 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
7729, 76reximddv3 42589 1 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  wne 2942  wral 3063  wrex 3064  Vcvv 3422   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cz 12249  cuz 12511  -𝑒cxne 12774  lim supclsp 15107  lim infclsi 43182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-xneg 12777  df-ico 13014  df-fl 13440  df-limsup 15108  df-liminf 43183
This theorem is referenced by:  liminflimsupxrre  43248
  Copyright terms: Public domain W3C validator