Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflbuz2 Structured version   Visualization version   GIF version

Theorem liminflbuz2 45816
Description: A sequence with values in the extended reals, and with liminf that is not -∞, is eventually greater than -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflbuz2.1 𝑗𝜑
liminflbuz2.2 𝑗𝐹
liminflbuz2.3 (𝜑𝑀 ∈ ℤ)
liminflbuz2.4 𝑍 = (ℤ𝑀)
liminflbuz2.5 (𝜑𝐹:𝑍⟶ℝ*)
liminflbuz2.6 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflbuz2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Distinct variable groups:   𝑘,𝐹   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem liminflbuz2
StepHypRef Expression
1 liminflbuz2.1 . . . . 5 𝑗𝜑
2 nfv 1914 . . . . 5 𝑗 𝑘𝑍
31, 2nfan 1899 . . . 4 𝑗(𝜑𝑘𝑍)
4 simpll 766 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
5 liminflbuz2.4 . . . . . . 7 𝑍 = (ℤ𝑀)
65uztrn2 12754 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
76adantll 714 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
8 liminflbuz2.5 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
98ffvelcdmda 7018 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
109adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
11 mnfxr 11172 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1211a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
13 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -∞ < (𝐹𝑗))
1410, 12, 13xrnltled 11184 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≤ -∞)
15 xlemnf 13069 . . . . . . . . . . 11 ((𝐹𝑗) ∈ ℝ* → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1610, 15syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1714, 16mpbid 232 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) = -∞)
18 xnegeq 13109 . . . . . . . . . 10 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = -𝑒-∞)
19 xnegmnf 13112 . . . . . . . . . 10 -𝑒-∞ = +∞
2018, 19eqtrdi 2780 . . . . . . . . 9 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = +∞)
2117, 20syl 17 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
2221adantlr 715 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
23 neneq 2931 . . . . . . . 8 (-𝑒(𝐹𝑗) ≠ +∞ → ¬ -𝑒(𝐹𝑗) = +∞)
2423ad2antlr 727 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -𝑒(𝐹𝑗) = +∞)
2522, 24condan 817 . . . . . 6 (((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) → -∞ < (𝐹𝑗))
2625ex 412 . . . . 5 ((𝜑𝑗𝑍) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
274, 7, 26syl2anc 584 . . . 4 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
283, 27ralimdaa 3230 . . 3 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞ → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
2928imp 406 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞) → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
309xnegcld 13202 . . . . . . . . 9 ((𝜑𝑗𝑍) → -𝑒(𝐹𝑗) ∈ ℝ*)
3130adantr 480 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ∈ ℝ*)
32 pnfxr 11169 . . . . . . . . 9 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → +∞ ∈ ℝ*)
34 eqidd 2730 . . . . . . . . . . 11 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
3534, 30fvmpt2d 6943 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3635adantr 480 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
37 simpr 484 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
3836, 37eqbrtrrd 5116 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) < +∞)
3931, 33, 38xrltned 45357 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ≠ +∞)
4039ex 412 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
414, 7, 40syl2anc 584 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
423, 41ralimdaa 3230 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞))
4342imp 406 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
44 nfmpt1 5191 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
45 liminflbuz2.3 . . . 4 (𝜑𝑀 ∈ ℤ)
461, 30fmptd2f 45233 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
475fvexi 6836 . . . . . . . . . . 11 𝑍 ∈ V
4847a1i 11 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
498, 48fexd 7163 . . . . . . . . 9 (𝜑𝐹 ∈ V)
5049liminfcld 45771 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
5150xnegnegd 45441 . . . . . . 7 (𝜑 → -𝑒-𝑒(lim inf‘𝐹) = (lim inf‘𝐹))
52 liminflbuz2.2 . . . . . . . 8 𝑗𝐹
531, 52, 45, 5, 8liminfvaluz3 45797 . . . . . . 7 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
5451, 53eqtr2d 2765 . . . . . 6 (𝜑 → -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹))
5548mptexd 7160 . . . . . . . 8 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
5655limsupcld 45691 . . . . . . 7 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
5750xnegcld 13202 . . . . . . 7 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ*)
58 xneg11 13117 . . . . . . 7 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
5956, 57, 58syl2anc 584 . . . . . 6 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
6054, 59mpbid 232 . . . . 5 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹))
61 nne 2929 . . . . . . 7 (¬ -𝑒(lim inf‘𝐹) ≠ +∞ ↔ -𝑒(lim inf‘𝐹) = +∞)
6251eqcomd 2735 . . . . . . . . 9 (𝜑 → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
6362adantr 480 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
64 xnegeq 13109 . . . . . . . . 9 (-𝑒(lim inf‘𝐹) = +∞ → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
6564adantl 481 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
66 xnegpnf 13111 . . . . . . . . 9 -𝑒+∞ = -∞
6766a1i 11 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒+∞ = -∞)
6863, 65, 673eqtrd 2768 . . . . . . 7 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -∞)
6961, 68sylan2b 594 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → (lim inf‘𝐹) = -∞)
70 liminflbuz2.6 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ≠ -∞)
7170neneqd 2930 . . . . . . 7 (𝜑 → ¬ (lim inf‘𝐹) = -∞)
7271adantr 480 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → ¬ (lim inf‘𝐹) = -∞)
7369, 72condan 817 . . . . 5 (𝜑 → -𝑒(lim inf‘𝐹) ≠ +∞)
7460, 73eqnetrd 2992 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ≠ +∞)
751, 44, 45, 5, 46, 74limsupubuz2 45814 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
7643, 75reximddv3 3146 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
7729, 76reximddv3 3146 1 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  Vcvv 3436   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  cz 12471  cuz 12735  -𝑒cxne 13011  lim supclsp 15377  lim infclsi 45752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-xneg 13014  df-ico 13254  df-fl 13696  df-limsup 15378  df-liminf 45753
This theorem is referenced by:  liminflimsupxrre  45818
  Copyright terms: Public domain W3C validator