Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflbuz2 Structured version   Visualization version   GIF version

Theorem liminflbuz2 44046
Description: A sequence with values in the extended reals, and with liminf that is not -∞, is eventually greater than -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflbuz2.1 𝑗𝜑
liminflbuz2.2 𝑗𝐹
liminflbuz2.3 (𝜑𝑀 ∈ ℤ)
liminflbuz2.4 𝑍 = (ℤ𝑀)
liminflbuz2.5 (𝜑𝐹:𝑍⟶ℝ*)
liminflbuz2.6 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflbuz2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Distinct variable groups:   𝑘,𝐹   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem liminflbuz2
StepHypRef Expression
1 liminflbuz2.1 . . . . 5 𝑗𝜑
2 nfv 1917 . . . . 5 𝑗 𝑘𝑍
31, 2nfan 1902 . . . 4 𝑗(𝜑𝑘𝑍)
4 simpll 765 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
5 liminflbuz2.4 . . . . . . 7 𝑍 = (ℤ𝑀)
65uztrn2 12782 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
76adantll 712 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
8 liminflbuz2.5 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
98ffvelcdmda 7035 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
109adantr 481 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
11 mnfxr 11212 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1211a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
13 simpr 485 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -∞ < (𝐹𝑗))
1410, 12, 13xrnltled 11223 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≤ -∞)
15 xlemnf 13086 . . . . . . . . . . 11 ((𝐹𝑗) ∈ ℝ* → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1610, 15syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1714, 16mpbid 231 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) = -∞)
18 xnegeq 13126 . . . . . . . . . 10 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = -𝑒-∞)
19 xnegmnf 13129 . . . . . . . . . 10 -𝑒-∞ = +∞
2018, 19eqtrdi 2792 . . . . . . . . 9 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = +∞)
2117, 20syl 17 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
2221adantlr 713 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
23 neneq 2949 . . . . . . . 8 (-𝑒(𝐹𝑗) ≠ +∞ → ¬ -𝑒(𝐹𝑗) = +∞)
2423ad2antlr 725 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -𝑒(𝐹𝑗) = +∞)
2522, 24condan 816 . . . . . 6 (((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) → -∞ < (𝐹𝑗))
2625ex 413 . . . . 5 ((𝜑𝑗𝑍) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
274, 7, 26syl2anc 584 . . . 4 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
283, 27ralimdaa 3243 . . 3 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞ → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
2928imp 407 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞) → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
309xnegcld 13219 . . . . . . . . 9 ((𝜑𝑗𝑍) → -𝑒(𝐹𝑗) ∈ ℝ*)
3130adantr 481 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ∈ ℝ*)
32 pnfxr 11209 . . . . . . . . 9 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → +∞ ∈ ℝ*)
34 eqidd 2737 . . . . . . . . . . 11 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
3534, 30fvmpt2d 6961 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3635adantr 481 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
37 simpr 485 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
3836, 37eqbrtrrd 5129 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) < +∞)
3931, 33, 38xrltned 43581 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ≠ +∞)
4039ex 413 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
414, 7, 40syl2anc 584 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
423, 41ralimdaa 3243 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞))
4342imp 407 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
44 nfmpt1 5213 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
45 liminflbuz2.3 . . . 4 (𝜑𝑀 ∈ ℤ)
461, 30fmptd2f 43450 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
475fvexi 6856 . . . . . . . . . . 11 𝑍 ∈ V
4847a1i 11 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
498, 48fexd 7177 . . . . . . . . 9 (𝜑𝐹 ∈ V)
5049liminfcld 44001 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
5150xnegnegd 43667 . . . . . . 7 (𝜑 → -𝑒-𝑒(lim inf‘𝐹) = (lim inf‘𝐹))
52 liminflbuz2.2 . . . . . . . 8 𝑗𝐹
531, 52, 45, 5, 8liminfvaluz3 44027 . . . . . . 7 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
5451, 53eqtr2d 2777 . . . . . 6 (𝜑 → -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹))
5548mptexd 7174 . . . . . . . 8 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
5655limsupcld 43921 . . . . . . 7 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
5750xnegcld 13219 . . . . . . 7 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ*)
58 xneg11 13134 . . . . . . 7 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
5956, 57, 58syl2anc 584 . . . . . 6 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
6054, 59mpbid 231 . . . . 5 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹))
61 nne 2947 . . . . . . 7 (¬ -𝑒(lim inf‘𝐹) ≠ +∞ ↔ -𝑒(lim inf‘𝐹) = +∞)
6251eqcomd 2742 . . . . . . . . 9 (𝜑 → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
6362adantr 481 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
64 xnegeq 13126 . . . . . . . . 9 (-𝑒(lim inf‘𝐹) = +∞ → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
6564adantl 482 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
66 xnegpnf 13128 . . . . . . . . 9 -𝑒+∞ = -∞
6766a1i 11 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒+∞ = -∞)
6863, 65, 673eqtrd 2780 . . . . . . 7 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -∞)
6961, 68sylan2b 594 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → (lim inf‘𝐹) = -∞)
70 liminflbuz2.6 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ≠ -∞)
7170neneqd 2948 . . . . . . 7 (𝜑 → ¬ (lim inf‘𝐹) = -∞)
7271adantr 481 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → ¬ (lim inf‘𝐹) = -∞)
7369, 72condan 816 . . . . 5 (𝜑 → -𝑒(lim inf‘𝐹) ≠ +∞)
7460, 73eqnetrd 3011 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ≠ +∞)
751, 44, 45, 5, 46, 74limsupubuz2 44044 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
7643, 75reximddv3 43351 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
7729, 76reximddv3 43351 1 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2887  wne 2943  wral 3064  wrex 3073  Vcvv 3445   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cz 12499  cuz 12763  -𝑒cxne 13030  lim supclsp 15352  lim infclsi 43982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-xneg 13033  df-ico 13270  df-fl 13697  df-limsup 15353  df-liminf 43983
This theorem is referenced by:  liminflimsupxrre  44048
  Copyright terms: Public domain W3C validator