Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflbuz2 Structured version   Visualization version   GIF version

Theorem liminflbuz2 42985
Description: A sequence with values in the extended reals, and with liminf that is not -∞, is eventually greater than -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflbuz2.1 𝑗𝜑
liminflbuz2.2 𝑗𝐹
liminflbuz2.3 (𝜑𝑀 ∈ ℤ)
liminflbuz2.4 𝑍 = (ℤ𝑀)
liminflbuz2.5 (𝜑𝐹:𝑍⟶ℝ*)
liminflbuz2.6 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflbuz2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Distinct variable groups:   𝑘,𝐹   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem liminflbuz2
StepHypRef Expression
1 liminflbuz2.1 . . . . 5 𝑗𝜑
2 nfv 1922 . . . . 5 𝑗 𝑘𝑍
31, 2nfan 1907 . . . 4 𝑗(𝜑𝑘𝑍)
4 simpll 767 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
5 liminflbuz2.4 . . . . . . 7 𝑍 = (ℤ𝑀)
65uztrn2 12440 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
76adantll 714 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
8 liminflbuz2.5 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
98ffvelrnda 6893 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
109adantr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
11 mnfxr 10873 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1211a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
13 simpr 488 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -∞ < (𝐹𝑗))
1410, 12, 13xrnltled 10884 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≤ -∞)
15 xlemnf 12740 . . . . . . . . . . 11 ((𝐹𝑗) ∈ ℝ* → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1610, 15syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1714, 16mpbid 235 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) = -∞)
18 xnegeq 12780 . . . . . . . . . 10 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = -𝑒-∞)
19 xnegmnf 12783 . . . . . . . . . 10 -𝑒-∞ = +∞
2018, 19eqtrdi 2790 . . . . . . . . 9 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = +∞)
2117, 20syl 17 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
2221adantlr 715 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
23 neneq 2941 . . . . . . . 8 (-𝑒(𝐹𝑗) ≠ +∞ → ¬ -𝑒(𝐹𝑗) = +∞)
2423ad2antlr 727 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -𝑒(𝐹𝑗) = +∞)
2522, 24condan 818 . . . . . 6 (((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) → -∞ < (𝐹𝑗))
2625ex 416 . . . . 5 ((𝜑𝑗𝑍) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
274, 7, 26syl2anc 587 . . . 4 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
283, 27ralimdaa 3131 . . 3 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞ → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
2928imp 410 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞) → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
309xnegcld 12873 . . . . . . . . 9 ((𝜑𝑗𝑍) → -𝑒(𝐹𝑗) ∈ ℝ*)
3130adantr 484 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ∈ ℝ*)
32 pnfxr 10870 . . . . . . . . 9 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → +∞ ∈ ℝ*)
34 eqidd 2735 . . . . . . . . . . 11 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
3534, 30fvmpt2d 6820 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3635adantr 484 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
37 simpr 488 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
3836, 37eqbrtrrd 5067 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) < +∞)
3931, 33, 38xrltned 42521 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ≠ +∞)
4039ex 416 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
414, 7, 40syl2anc 587 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
423, 41ralimdaa 3131 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞))
4342imp 410 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
44 nfmpt1 5142 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
45 liminflbuz2.3 . . . 4 (𝜑𝑀 ∈ ℤ)
461, 30fmptd2f 42403 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
475fvexi 6720 . . . . . . . . . . 11 𝑍 ∈ V
4847a1i 11 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
498, 48fexd 7032 . . . . . . . . 9 (𝜑𝐹 ∈ V)
5049liminfcld 42940 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
5150xnegnegd 42607 . . . . . . 7 (𝜑 → -𝑒-𝑒(lim inf‘𝐹) = (lim inf‘𝐹))
52 liminflbuz2.2 . . . . . . . 8 𝑗𝐹
531, 52, 45, 5, 8liminfvaluz3 42966 . . . . . . 7 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
5451, 53eqtr2d 2775 . . . . . 6 (𝜑 → -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹))
5548mptexd 7029 . . . . . . . 8 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
5655limsupcld 42860 . . . . . . 7 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
5750xnegcld 12873 . . . . . . 7 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ*)
58 xneg11 12788 . . . . . . 7 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
5956, 57, 58syl2anc 587 . . . . . 6 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
6054, 59mpbid 235 . . . . 5 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹))
61 nne 2939 . . . . . . 7 (¬ -𝑒(lim inf‘𝐹) ≠ +∞ ↔ -𝑒(lim inf‘𝐹) = +∞)
6251eqcomd 2740 . . . . . . . . 9 (𝜑 → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
6362adantr 484 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
64 xnegeq 12780 . . . . . . . . 9 (-𝑒(lim inf‘𝐹) = +∞ → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
6564adantl 485 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
66 xnegpnf 12782 . . . . . . . . 9 -𝑒+∞ = -∞
6766a1i 11 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒+∞ = -∞)
6863, 65, 673eqtrd 2778 . . . . . . 7 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -∞)
6961, 68sylan2b 597 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → (lim inf‘𝐹) = -∞)
70 liminflbuz2.6 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ≠ -∞)
7170neneqd 2940 . . . . . . 7 (𝜑 → ¬ (lim inf‘𝐹) = -∞)
7271adantr 484 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → ¬ (lim inf‘𝐹) = -∞)
7369, 72condan 818 . . . . 5 (𝜑 → -𝑒(lim inf‘𝐹) ≠ +∞)
7460, 73eqnetrd 3002 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ≠ +∞)
751, 44, 45, 5, 46, 74limsupubuz2 42983 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
7643, 75reximddv3 42325 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
7729, 76reximddv3 42325 1 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wnf 1791  wcel 2110  wnfc 2880  wne 2935  wral 3054  wrex 3055  Vcvv 3401   class class class wbr 5043  cmpt 5124  wf 6365  cfv 6369  +∞cpnf 10847  -∞cmnf 10848  *cxr 10849   < clt 10850  cle 10851  cz 12159  cuz 12421  -𝑒cxne 12684  lim supclsp 15014  lim infclsi 42921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-xneg 12687  df-ico 12924  df-fl 13350  df-limsup 15015  df-liminf 42922
This theorem is referenced by:  liminflimsupxrre  42987
  Copyright terms: Public domain W3C validator