Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflbuz2 Structured version   Visualization version   GIF version

Theorem liminflbuz2 42094
Description: A sequence with values in the extended reals, and with liminf that is not -∞, is eventually greater than -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflbuz2.1 𝑗𝜑
liminflbuz2.2 𝑗𝐹
liminflbuz2.3 (𝜑𝑀 ∈ ℤ)
liminflbuz2.4 𝑍 = (ℤ𝑀)
liminflbuz2.5 (𝜑𝐹:𝑍⟶ℝ*)
liminflbuz2.6 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflbuz2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Distinct variable groups:   𝑘,𝐹   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem liminflbuz2
StepHypRef Expression
1 liminflbuz2.1 . . . . 5 𝑗𝜑
2 nfv 1911 . . . . 5 𝑗 𝑘𝑍
31, 2nfan 1896 . . . 4 𝑗(𝜑𝑘𝑍)
4 simpll 765 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
5 liminflbuz2.4 . . . . . . 7 𝑍 = (ℤ𝑀)
65uztrn2 12261 . . . . . 6 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
76adantll 712 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
8 liminflbuz2.5 . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶ℝ*)
98ffvelrnda 6850 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
109adantr 483 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
11 mnfxr 10697 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1211a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
13 simpr 487 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -∞ < (𝐹𝑗))
1410, 12, 13xrnltled 10708 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≤ -∞)
15 xlemnf 12559 . . . . . . . . . . 11 ((𝐹𝑗) ∈ ℝ* → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1610, 15syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → ((𝐹𝑗) ≤ -∞ ↔ (𝐹𝑗) = -∞))
1714, 16mpbid 234 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → (𝐹𝑗) = -∞)
18 xnegeq 12599 . . . . . . . . . 10 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = -𝑒-∞)
19 xnegmnf 12602 . . . . . . . . . 10 -𝑒-∞ = +∞
2018, 19syl6eq 2872 . . . . . . . . 9 ((𝐹𝑗) = -∞ → -𝑒(𝐹𝑗) = +∞)
2117, 20syl 17 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
2221adantlr 713 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → -𝑒(𝐹𝑗) = +∞)
23 neneq 3022 . . . . . . . 8 (-𝑒(𝐹𝑗) ≠ +∞ → ¬ -𝑒(𝐹𝑗) = +∞)
2423ad2antlr 725 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) ∧ ¬ -∞ < (𝐹𝑗)) → ¬ -𝑒(𝐹𝑗) = +∞)
2522, 24condan 816 . . . . . 6 (((𝜑𝑗𝑍) ∧ -𝑒(𝐹𝑗) ≠ +∞) → -∞ < (𝐹𝑗))
2625ex 415 . . . . 5 ((𝜑𝑗𝑍) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
274, 7, 26syl2anc 586 . . . 4 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (-𝑒(𝐹𝑗) ≠ +∞ → -∞ < (𝐹𝑗)))
283, 27ralimdaa 3217 . . 3 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞ → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
2928imp 409 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞) → ∀𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
309xnegcld 12692 . . . . . . . . 9 ((𝜑𝑗𝑍) → -𝑒(𝐹𝑗) ∈ ℝ*)
3130adantr 483 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ∈ ℝ*)
32 pnfxr 10694 . . . . . . . . 9 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → +∞ ∈ ℝ*)
34 eqidd 2822 . . . . . . . . . . 11 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
3534, 30fvmpt2d 6780 . . . . . . . . . 10 ((𝜑𝑗𝑍) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3635adantr 483 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
37 simpr 487 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
3836, 37eqbrtrrd 5089 . . . . . . . 8 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) < +∞)
3931, 33, 38xrltned 41623 . . . . . . 7 (((𝜑𝑗𝑍) ∧ ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → -𝑒(𝐹𝑗) ≠ +∞)
4039ex 415 . . . . . 6 ((𝜑𝑗𝑍) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
414, 7, 40syl2anc 586 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → -𝑒(𝐹𝑗) ≠ +∞))
423, 41ralimdaa 3217 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞ → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞))
4342imp 409 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞) → ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
44 nfmpt1 5163 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
45 liminflbuz2.3 . . . 4 (𝜑𝑀 ∈ ℤ)
461, 30fmptd2f 41503 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
475fvexi 6683 . . . . . . . . . . 11 𝑍 ∈ V
4847a1i 11 . . . . . . . . . 10 (𝜑𝑍 ∈ V)
498, 48fexd 41377 . . . . . . . . 9 (𝜑𝐹 ∈ V)
5049liminfcld 42049 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
5150xnegnegd 41714 . . . . . . 7 (𝜑 → -𝑒-𝑒(lim inf‘𝐹) = (lim inf‘𝐹))
52 liminflbuz2.2 . . . . . . . 8 𝑗𝐹
531, 52, 45, 5, 8liminfvaluz3 42075 . . . . . . 7 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
5451, 53eqtr2d 2857 . . . . . 6 (𝜑 → -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹))
5548mptexd 6986 . . . . . . . 8 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
5655limsupcld 41969 . . . . . . 7 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
5750xnegcld 12692 . . . . . . 7 (𝜑 → -𝑒(lim inf‘𝐹) ∈ ℝ*)
58 xneg11 12607 . . . . . . 7 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -𝑒(lim inf‘𝐹) ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
5956, 57, 58syl2anc 586 . . . . . 6 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-𝑒(lim inf‘𝐹) ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹)))
6054, 59mpbid 234 . . . . 5 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒(lim inf‘𝐹))
61 nne 3020 . . . . . . 7 (¬ -𝑒(lim inf‘𝐹) ≠ +∞ ↔ -𝑒(lim inf‘𝐹) = +∞)
6251eqcomd 2827 . . . . . . . . 9 (𝜑 → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
6362adantr 483 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -𝑒-𝑒(lim inf‘𝐹))
64 xnegeq 12599 . . . . . . . . 9 (-𝑒(lim inf‘𝐹) = +∞ → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
6564adantl 484 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒-𝑒(lim inf‘𝐹) = -𝑒+∞)
66 xnegpnf 12601 . . . . . . . . 9 -𝑒+∞ = -∞
6766a1i 11 . . . . . . . 8 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → -𝑒+∞ = -∞)
6863, 65, 673eqtrd 2860 . . . . . . 7 ((𝜑 ∧ -𝑒(lim inf‘𝐹) = +∞) → (lim inf‘𝐹) = -∞)
6961, 68sylan2b 595 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → (lim inf‘𝐹) = -∞)
70 liminflbuz2.6 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ≠ -∞)
7170neneqd 3021 . . . . . . 7 (𝜑 → ¬ (lim inf‘𝐹) = -∞)
7271adantr 483 . . . . . 6 ((𝜑 ∧ ¬ -𝑒(lim inf‘𝐹) ≠ +∞) → ¬ (lim inf‘𝐹) = -∞)
7369, 72condan 816 . . . . 5 (𝜑 → -𝑒(lim inf‘𝐹) ≠ +∞)
7460, 73eqnetrd 3083 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ≠ +∞)
751, 44, 45, 5, 46, 74limsupubuz2 42092 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) < +∞)
7643, 75reximddv3 41418 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≠ +∞)
7729, 76reximddv3 41418 1 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wnf 1780  wcel 2110  wnfc 2961  wne 3016  wral 3138  wrex 3139  Vcvv 3494   class class class wbr 5065  cmpt 5145  wf 6350  cfv 6354  +∞cpnf 10671  -∞cmnf 10672  *cxr 10673   < clt 10674  cle 10675  cz 11980  cuz 12242  -𝑒cxne 12503  lim supclsp 14826  lim infclsi 42030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-xneg 12506  df-ico 12743  df-fl 13161  df-limsup 14827  df-liminf 42031
This theorem is referenced by:  liminflimsupxrre  42096
  Copyright terms: Public domain W3C validator