| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 3 | reximdva 3146 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximddv3 3150 reximddv2 3196 dedekind 11337 caucvgrlem 15639 isprm5 16677 drsdirfi 18266 sylow2 19556 gexex 19783 nrmsep 23244 regsep2 23263 locfincmp 23413 dissnref 23415 met1stc 24409 xrge0tsms 24723 cnheibor 24854 lmcau 25213 ismbf3d 25555 ulmdvlem3 26311 legov 28512 legtrid 28518 midexlem 28619 opphllem 28662 mideulem 28663 midex 28664 oppperpex 28680 hpgid 28693 lnperpex 28730 trgcopy 28731 grpoidinv 30437 pjhthlem2 31321 mdsymlem3 32334 xrge0tsmsd 33002 isdrng4 33245 drngidl 33404 ssdifidlprm 33429 qsdrngi 33466 ballotlemfc0 34484 ballotlemfcc 34485 cvmliftlem15 35285 unblimceq0 36495 knoppndvlem18 36517 lhpexle3lem 40005 lhpex2leN 40007 cdlemg1cex 40582 fsuppind 42578 nacsfix 42700 unxpwdom3 43084 rfcnnnub 45030 climxrrelem 45747 climxrre 45748 xlimxrre 45829 stoweidlem27 46025 thinciso 49459 |
| Copyright terms: Public domain | W3C validator |