MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv Structured version   Visualization version   GIF version

Theorem reximddv 3203
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
reximddva.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
reximddva.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximddv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reximddv
StepHypRef Expression
1 reximddva.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 reximddva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
32expr 456 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
43reximdva 3202 . 2 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
51, 4mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-rex 3069
This theorem is referenced by:  reximddv2  3206  dedekind  11068  caucvgrlem  15312  isprm5  16340  drsdirfi  17938  sylow2  19146  gexex  19369  nrmsep  22416  regsep2  22435  locfincmp  22585  dissnref  22587  met1stc  23583  xrge0tsms  23903  cnheibor  24024  lmcau  24382  ismbf3d  24723  ulmdvlem3  25466  legov  26850  legtrid  26856  midexlem  26957  opphllem  27000  mideulem  27001  midex  27002  oppperpex  27018  hpgid  27031  lnperpex  27068  trgcopy  27069  grpoidinv  28771  pjhthlem2  29655  mdsymlem3  30668  xrge0tsmsd  31219  ballotlemfc0  32359  ballotlemfcc  32360  cvmliftlem15  33160  unblimceq0  34614  knoppndvlem18  34636  lhpexle3lem  37952  lhpex2leN  37954  cdlemg1cex  38529  fsuppind  40202  nacsfix  40450  unxpwdom3  40836  rfcnnnub  42468  reximddv3  42589  climxrrelem  43180  climxrre  43181  xlimxrre  43262  stoweidlem27  43458  thinciso  46229
  Copyright terms: Public domain W3C validator