MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv Structured version   Visualization version   GIF version

Theorem reximddv 3168
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
reximddva.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
reximddva.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximddv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reximddv
StepHypRef Expression
1 reximddva.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 reximddva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
32expr 456 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
43reximdva 3165 . 2 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
51, 4mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wrex 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-rex 3068
This theorem is referenced by:  reximddv3  3169  reximddv2  3212  dedekind  11421  caucvgrlem  15705  isprm5  16740  drsdirfi  18362  sylow2  19658  gexex  19885  nrmsep  23380  regsep2  23399  locfincmp  23549  dissnref  23551  met1stc  24549  xrge0tsms  24869  cnheibor  25000  lmcau  25360  ismbf3d  25702  ulmdvlem3  26459  legov  28607  legtrid  28613  midexlem  28714  opphllem  28757  mideulem  28758  midex  28759  oppperpex  28775  hpgid  28788  lnperpex  28825  trgcopy  28826  grpoidinv  30536  pjhthlem2  31420  mdsymlem3  32433  xrge0tsmsd  33047  isdrng4  33278  drngidl  33440  ssdifidlprm  33465  qsdrngi  33502  ballotlemfc0  34473  ballotlemfcc  34474  cvmliftlem15  35282  unblimceq0  36489  knoppndvlem18  36511  lhpexle3lem  39993  lhpex2leN  39995  cdlemg1cex  40570  fsuppind  42576  nacsfix  42699  unxpwdom3  43083  rfcnnnub  44973  climxrrelem  45704  climxrre  45705  xlimxrre  45786  stoweidlem27  45982  thinciso  48860
  Copyright terms: Public domain W3C validator