MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv Structured version   Visualization version   GIF version

Theorem reximddv 3149
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
reximddva.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
reximddva.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximddv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reximddv
StepHypRef Expression
1 reximddva.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 reximddva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
32expr 456 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
43reximdva 3146 . 2 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
51, 4mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wrex 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3058
This theorem is referenced by:  reximddv3  3150  reximddv2  3192  dedekind  11283  caucvgrlem  15582  isprm5  16620  drsdirfi  18213  sylow2  19540  gexex  19767  nrmsep  23273  regsep2  23292  locfincmp  23442  dissnref  23444  met1stc  24437  xrge0tsms  24751  cnheibor  24882  lmcau  25241  ismbf3d  25583  ulmdvlem3  26339  legov  28564  legtrid  28570  midexlem  28671  opphllem  28714  mideulem  28715  midex  28716  oppperpex  28732  hpgid  28745  lnperpex  28782  trgcopy  28783  grpoidinv  30490  pjhthlem2  31374  mdsymlem3  32387  xrge0tsmsd  33049  isdrng4  33268  drngidl  33405  ssdifidlprm  33430  qsdrngi  33467  ballotlemfc0  34527  ballotlemfcc  34528  cvmliftlem15  35363  unblimceq0  36572  knoppndvlem18  36594  lhpexle3lem  40131  lhpex2leN  40133  cdlemg1cex  40708  fsuppind  42709  nacsfix  42830  unxpwdom3  43213  rfcnnnub  45158  climxrrelem  45872  climxrre  45873  xlimxrre  45954  stoweidlem27  46150  thinciso  49596
  Copyright terms: Public domain W3C validator