MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv Structured version   Visualization version   GIF version

Theorem reximddv 3148
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
reximddva.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
reximddva.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximddv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reximddv
StepHypRef Expression
1 reximddva.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 reximddva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
32expr 456 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
43reximdva 3145 . 2 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
51, 4mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wrex 3056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-rex 3057
This theorem is referenced by:  reximddv3  3149  reximddv2  3191  dedekind  11276  caucvgrlem  15580  isprm5  16618  drsdirfi  18211  sylow2  19539  gexex  19766  nrmsep  23273  regsep2  23292  locfincmp  23442  dissnref  23444  met1stc  24437  xrge0tsms  24751  cnheibor  24882  lmcau  25241  ismbf3d  25583  ulmdvlem3  26339  legov  28564  legtrid  28570  midexlem  28671  opphllem  28714  mideulem  28715  midex  28716  oppperpex  28732  hpgid  28745  lnperpex  28782  trgcopy  28783  grpoidinv  30486  pjhthlem2  31370  mdsymlem3  32383  xrge0tsmsd  33040  isdrng4  33259  drngidl  33396  ssdifidlprm  33421  qsdrngi  33458  ballotlemfc0  34504  ballotlemfcc  34505  cvmliftlem15  35340  unblimceq0  36547  knoppndvlem18  36569  lhpexle3lem  40056  lhpex2leN  40058  cdlemg1cex  40633  fsuppind  42629  nacsfix  42751  unxpwdom3  43134  rfcnnnub  45079  climxrrelem  45793  climxrre  45794  xlimxrre  45875  stoweidlem27  46071  thinciso  49508
  Copyright terms: Public domain W3C validator