| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 3 | reximdva 3153 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: reximddv3 3157 reximddv2 3200 dedekind 11398 caucvgrlem 15689 isprm5 16726 drsdirfi 18317 sylow2 19607 gexex 19834 nrmsep 23295 regsep2 23314 locfincmp 23464 dissnref 23466 met1stc 24460 xrge0tsms 24774 cnheibor 24905 lmcau 25265 ismbf3d 25607 ulmdvlem3 26363 legov 28564 legtrid 28570 midexlem 28671 opphllem 28714 mideulem 28715 midex 28716 oppperpex 28732 hpgid 28745 lnperpex 28782 trgcopy 28783 grpoidinv 30489 pjhthlem2 31373 mdsymlem3 32386 xrge0tsmsd 33056 isdrng4 33289 drngidl 33448 ssdifidlprm 33473 qsdrngi 33510 ballotlemfc0 34525 ballotlemfcc 34526 cvmliftlem15 35320 unblimceq0 36525 knoppndvlem18 36547 lhpexle3lem 40030 lhpex2leN 40032 cdlemg1cex 40607 fsuppind 42613 nacsfix 42735 unxpwdom3 43119 rfcnnnub 45060 climxrrelem 45778 climxrre 45779 xlimxrre 45860 stoweidlem27 46056 thinciso 49356 |
| Copyright terms: Public domain | W3C validator |