MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv Structured version   Visualization version   GIF version

Theorem reximddv 3177
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
reximddva.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
reximddva.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximddv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reximddv
StepHypRef Expression
1 reximddva.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 reximddva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
32expr 456 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
43reximdva 3174 . 2 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
51, 4mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-rex 3077
This theorem is referenced by:  reximddv3  3178  reximddv2  3221  dedekind  11453  caucvgrlem  15721  isprm5  16754  drsdirfi  18375  sylow2  19668  gexex  19895  nrmsep  23386  regsep2  23405  locfincmp  23555  dissnref  23557  met1stc  24555  xrge0tsms  24875  cnheibor  25006  lmcau  25366  ismbf3d  25708  ulmdvlem3  26463  legov  28611  legtrid  28617  midexlem  28718  opphllem  28761  mideulem  28762  midex  28763  oppperpex  28779  hpgid  28792  lnperpex  28829  trgcopy  28830  grpoidinv  30540  pjhthlem2  31424  mdsymlem3  32437  xrge0tsmsd  33041  isdrng4  33264  drngidl  33426  ssdifidlprm  33451  qsdrngi  33488  ballotlemfc0  34457  ballotlemfcc  34458  cvmliftlem15  35266  unblimceq0  36473  knoppndvlem18  36495  lhpexle3lem  39968  lhpex2leN  39970  cdlemg1cex  40545  fsuppind  42545  nacsfix  42668  unxpwdom3  43052  rfcnnnub  44936  climxrrelem  45670  climxrre  45671  xlimxrre  45752  stoweidlem27  45948  thinciso  48727
  Copyright terms: Public domain W3C validator