| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 3 | reximdva 3146 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: reximddv3 3150 reximddv2 3192 dedekind 11283 caucvgrlem 15582 isprm5 16620 drsdirfi 18213 sylow2 19540 gexex 19767 nrmsep 23273 regsep2 23292 locfincmp 23442 dissnref 23444 met1stc 24437 xrge0tsms 24751 cnheibor 24882 lmcau 25241 ismbf3d 25583 ulmdvlem3 26339 legov 28564 legtrid 28570 midexlem 28671 opphllem 28714 mideulem 28715 midex 28716 oppperpex 28732 hpgid 28745 lnperpex 28782 trgcopy 28783 grpoidinv 30490 pjhthlem2 31374 mdsymlem3 32387 xrge0tsmsd 33049 isdrng4 33268 drngidl 33405 ssdifidlprm 33430 qsdrngi 33467 ballotlemfc0 34527 ballotlemfcc 34528 cvmliftlem15 35363 unblimceq0 36572 knoppndvlem18 36594 lhpexle3lem 40131 lhpex2leN 40133 cdlemg1cex 40708 fsuppind 42709 nacsfix 42830 unxpwdom3 43213 rfcnnnub 45158 climxrrelem 45872 climxrre 45873 xlimxrre 45954 stoweidlem27 46150 thinciso 49596 |
| Copyright terms: Public domain | W3C validator |