| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 3 | reximdva 3147 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: reximddv3 3151 reximddv2 3197 dedekind 11344 caucvgrlem 15646 isprm5 16684 drsdirfi 18273 sylow2 19563 gexex 19790 nrmsep 23251 regsep2 23270 locfincmp 23420 dissnref 23422 met1stc 24416 xrge0tsms 24730 cnheibor 24861 lmcau 25220 ismbf3d 25562 ulmdvlem3 26318 legov 28519 legtrid 28525 midexlem 28626 opphllem 28669 mideulem 28670 midex 28671 oppperpex 28687 hpgid 28700 lnperpex 28737 trgcopy 28738 grpoidinv 30444 pjhthlem2 31328 mdsymlem3 32341 xrge0tsmsd 33009 isdrng4 33252 drngidl 33411 ssdifidlprm 33436 qsdrngi 33473 ballotlemfc0 34491 ballotlemfcc 34492 cvmliftlem15 35292 unblimceq0 36502 knoppndvlem18 36524 lhpexle3lem 40012 lhpex2leN 40014 cdlemg1cex 40589 fsuppind 42585 nacsfix 42707 unxpwdom3 43091 rfcnnnub 45037 climxrrelem 45754 climxrre 45755 xlimxrre 45836 stoweidlem27 46032 thinciso 49463 |
| Copyright terms: Public domain | W3C validator |