| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 3 | reximdva 3142 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximddv3 3146 reximddv2 3188 dedekind 11297 caucvgrlem 15598 isprm5 16636 drsdirfi 18229 sylow2 19523 gexex 19750 nrmsep 23260 regsep2 23279 locfincmp 23429 dissnref 23431 met1stc 24425 xrge0tsms 24739 cnheibor 24870 lmcau 25229 ismbf3d 25571 ulmdvlem3 26327 legov 28548 legtrid 28554 midexlem 28655 opphllem 28698 mideulem 28699 midex 28700 oppperpex 28716 hpgid 28729 lnperpex 28766 trgcopy 28767 grpoidinv 30470 pjhthlem2 31354 mdsymlem3 32367 xrge0tsmsd 33028 isdrng4 33247 drngidl 33383 ssdifidlprm 33408 qsdrngi 33445 ballotlemfc0 34463 ballotlemfcc 34464 cvmliftlem15 35273 unblimceq0 36483 knoppndvlem18 36505 lhpexle3lem 39993 lhpex2leN 39995 cdlemg1cex 40570 fsuppind 42566 nacsfix 42688 unxpwdom3 43071 rfcnnnub 45017 climxrrelem 45734 climxrre 45735 xlimxrre 45816 stoweidlem27 46012 thinciso 49459 |
| Copyright terms: Public domain | W3C validator |