![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
4 | 3 | reximdva 3174 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: reximddv3 3178 reximddv2 3221 dedekind 11453 caucvgrlem 15721 isprm5 16754 drsdirfi 18375 sylow2 19668 gexex 19895 nrmsep 23386 regsep2 23405 locfincmp 23555 dissnref 23557 met1stc 24555 xrge0tsms 24875 cnheibor 25006 lmcau 25366 ismbf3d 25708 ulmdvlem3 26463 legov 28611 legtrid 28617 midexlem 28718 opphllem 28761 mideulem 28762 midex 28763 oppperpex 28779 hpgid 28792 lnperpex 28829 trgcopy 28830 grpoidinv 30540 pjhthlem2 31424 mdsymlem3 32437 xrge0tsmsd 33041 isdrng4 33264 drngidl 33426 ssdifidlprm 33451 qsdrngi 33488 ballotlemfc0 34457 ballotlemfcc 34458 cvmliftlem15 35266 unblimceq0 36473 knoppndvlem18 36495 lhpexle3lem 39968 lhpex2leN 39970 cdlemg1cex 40545 fsuppind 42545 nacsfix 42668 unxpwdom3 43052 rfcnnnub 44936 climxrrelem 45670 climxrre 45671 xlimxrre 45752 stoweidlem27 45948 thinciso 48727 |
Copyright terms: Public domain | W3C validator |