![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
4 | 3 | reximdva 3165 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: reximddv3 3169 reximddv2 3212 dedekind 11421 caucvgrlem 15705 isprm5 16740 drsdirfi 18362 sylow2 19658 gexex 19885 nrmsep 23380 regsep2 23399 locfincmp 23549 dissnref 23551 met1stc 24549 xrge0tsms 24869 cnheibor 25000 lmcau 25360 ismbf3d 25702 ulmdvlem3 26459 legov 28607 legtrid 28613 midexlem 28714 opphllem 28757 mideulem 28758 midex 28759 oppperpex 28775 hpgid 28788 lnperpex 28825 trgcopy 28826 grpoidinv 30536 pjhthlem2 31420 mdsymlem3 32433 xrge0tsmsd 33047 isdrng4 33278 drngidl 33440 ssdifidlprm 33465 qsdrngi 33502 ballotlemfc0 34473 ballotlemfcc 34474 cvmliftlem15 35282 unblimceq0 36489 knoppndvlem18 36511 lhpexle3lem 39993 lhpex2leN 39995 cdlemg1cex 40570 fsuppind 42576 nacsfix 42699 unxpwdom3 43083 rfcnnnub 44973 climxrrelem 45704 climxrre 45705 xlimxrre 45786 stoweidlem27 45982 thinciso 48860 |
Copyright terms: Public domain | W3C validator |