Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
3 | 2 | expr 457 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
4 | 3 | reximdva 3162 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-rex 3072 |
This theorem is referenced by: reximddv2 3203 dedekind 11218 caucvgrlem 15463 isprm5 16489 drsdirfi 18100 sylow2 19307 gexex 19529 nrmsep 22591 regsep2 22610 locfincmp 22760 dissnref 22762 met1stc 23760 xrge0tsms 24080 cnheibor 24201 lmcau 24560 ismbf3d 24901 ulmdvlem3 25644 legov 27082 legtrid 27088 midexlem 27189 opphllem 27232 mideulem 27233 midex 27234 oppperpex 27250 hpgid 27263 lnperpex 27300 trgcopy 27301 grpoidinv 29006 pjhthlem2 29890 mdsymlem3 30903 xrge0tsmsd 31452 ballotlemfc0 32599 ballotlemfcc 32600 cvmliftlem15 33399 unblimceq0 34761 knoppndvlem18 34783 lhpexle3lem 38246 lhpex2leN 38248 cdlemg1cex 38823 fsuppind 40495 nacsfix 40750 unxpwdom3 41137 rfcnnnub 42813 reximddv3 42935 climxrrelem 43540 climxrre 43541 xlimxrre 43622 stoweidlem27 43818 thinciso 46606 |
Copyright terms: Public domain | W3C validator |