Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
3 | 2 | expr 457 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
4 | 3 | reximdva 3203 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: reximddv2 3207 dedekind 11138 caucvgrlem 15384 isprm5 16412 drsdirfi 18023 sylow2 19231 gexex 19454 nrmsep 22508 regsep2 22527 locfincmp 22677 dissnref 22679 met1stc 23677 xrge0tsms 23997 cnheibor 24118 lmcau 24477 ismbf3d 24818 ulmdvlem3 25561 legov 26946 legtrid 26952 midexlem 27053 opphllem 27096 mideulem 27097 midex 27098 oppperpex 27114 hpgid 27127 lnperpex 27164 trgcopy 27165 grpoidinv 28870 pjhthlem2 29754 mdsymlem3 30767 xrge0tsmsd 31317 ballotlemfc0 32459 ballotlemfcc 32460 cvmliftlem15 33260 unblimceq0 34687 knoppndvlem18 34709 lhpexle3lem 38025 lhpex2leN 38027 cdlemg1cex 38602 fsuppind 40279 nacsfix 40534 unxpwdom3 40920 rfcnnnub 42579 reximddv3 42700 climxrrelem 43290 climxrre 43291 xlimxrre 43372 stoweidlem27 43568 thinciso 46341 |
Copyright terms: Public domain | W3C validator |