Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
Ref | Expression |
---|---|
reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
4 | 3 | reximdva 3202 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: reximddv2 3206 dedekind 11068 caucvgrlem 15312 isprm5 16340 drsdirfi 17938 sylow2 19146 gexex 19369 nrmsep 22416 regsep2 22435 locfincmp 22585 dissnref 22587 met1stc 23583 xrge0tsms 23903 cnheibor 24024 lmcau 24382 ismbf3d 24723 ulmdvlem3 25466 legov 26850 legtrid 26856 midexlem 26957 opphllem 27000 mideulem 27001 midex 27002 oppperpex 27018 hpgid 27031 lnperpex 27068 trgcopy 27069 grpoidinv 28771 pjhthlem2 29655 mdsymlem3 30668 xrge0tsmsd 31219 ballotlemfc0 32359 ballotlemfcc 32360 cvmliftlem15 33160 unblimceq0 34614 knoppndvlem18 34636 lhpexle3lem 37952 lhpex2leN 37954 cdlemg1cex 38529 fsuppind 40202 nacsfix 40450 unxpwdom3 40836 rfcnnnub 42468 reximddv3 42589 climxrrelem 43180 climxrre 43181 xlimxrre 43262 stoweidlem27 43458 thinciso 46229 |
Copyright terms: Public domain | W3C validator |