| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximddv | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
| Ref | Expression |
|---|---|
| reximddva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) |
| reximddva.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| reximddv | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximddva.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | reximddva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜒) | |
| 3 | 2 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 3 | reximdva 3145 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: reximddv3 3149 reximddv2 3191 dedekind 11276 caucvgrlem 15580 isprm5 16618 drsdirfi 18211 sylow2 19539 gexex 19766 nrmsep 23273 regsep2 23292 locfincmp 23442 dissnref 23444 met1stc 24437 xrge0tsms 24751 cnheibor 24882 lmcau 25241 ismbf3d 25583 ulmdvlem3 26339 legov 28564 legtrid 28570 midexlem 28671 opphllem 28714 mideulem 28715 midex 28716 oppperpex 28732 hpgid 28745 lnperpex 28782 trgcopy 28783 grpoidinv 30486 pjhthlem2 31370 mdsymlem3 32383 xrge0tsmsd 33040 isdrng4 33259 drngidl 33396 ssdifidlprm 33421 qsdrngi 33458 ballotlemfc0 34504 ballotlemfcc 34505 cvmliftlem15 35340 unblimceq0 36547 knoppndvlem18 36569 lhpexle3lem 40056 lhpex2leN 40058 cdlemg1cex 40633 fsuppind 42629 nacsfix 42751 unxpwdom3 43134 rfcnnnub 45079 climxrrelem 45793 climxrre 45794 xlimxrre 45875 stoweidlem27 46071 thinciso 49508 |
| Copyright terms: Public domain | W3C validator |