MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv Structured version   Visualization version   GIF version

Theorem reximddv 3156
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
reximddva.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
reximddva.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximddv (𝜑 → ∃𝑥𝐴 𝜒)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem reximddv
StepHypRef Expression
1 reximddva.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 reximddva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜒)
32expr 456 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
43reximdva 3153 . 2 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
51, 4mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-rex 3061
This theorem is referenced by:  reximddv3  3157  reximddv2  3200  dedekind  11398  caucvgrlem  15689  isprm5  16726  drsdirfi  18317  sylow2  19607  gexex  19834  nrmsep  23295  regsep2  23314  locfincmp  23464  dissnref  23466  met1stc  24460  xrge0tsms  24774  cnheibor  24905  lmcau  25265  ismbf3d  25607  ulmdvlem3  26363  legov  28564  legtrid  28570  midexlem  28671  opphllem  28714  mideulem  28715  midex  28716  oppperpex  28732  hpgid  28745  lnperpex  28782  trgcopy  28783  grpoidinv  30489  pjhthlem2  31373  mdsymlem3  32386  xrge0tsmsd  33056  isdrng4  33289  drngidl  33448  ssdifidlprm  33473  qsdrngi  33510  ballotlemfc0  34525  ballotlemfcc  34526  cvmliftlem15  35320  unblimceq0  36525  knoppndvlem18  36547  lhpexle3lem  40030  lhpex2leN  40032  cdlemg1cex  40607  fsuppind  42613  nacsfix  42735  unxpwdom3  43119  rfcnnnub  45060  climxrrelem  45778  climxrre  45779  xlimxrre  45860  stoweidlem27  46056  thinciso  49356
  Copyright terms: Public domain W3C validator