Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptlb Structured version   Visualization version   GIF version

Theorem rnmptlb 44245
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
rnmptlb.1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
Assertion
Ref Expression
rnmptlb (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝜑,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rnmptlb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5954 . . . . . 6 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3478 . . . . 5 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 nfra1 3279 . . . . . . . 8 𝑥𝑥𝐴 𝑤𝐵
5 nfv 1915 . . . . . . . 8 𝑥 𝑤𝑧
6 rspa 3243 . . . . . . . . . . 11 ((∀𝑥𝐴 𝑤𝐵𝑥𝐴) → 𝑤𝐵)
763adant3 1130 . . . . . . . . . 10 ((∀𝑥𝐴 𝑤𝐵𝑥𝐴𝑧 = 𝐵) → 𝑤𝐵)
8 simp3 1136 . . . . . . . . . 10 ((∀𝑥𝐴 𝑤𝐵𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
97, 8breqtrrd 5175 . . . . . . . . 9 ((∀𝑥𝐴 𝑤𝐵𝑥𝐴𝑧 = 𝐵) → 𝑤𝑧)
1093exp 1117 . . . . . . . 8 (∀𝑥𝐴 𝑤𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝑤𝑧)))
114, 5, 10rexlimd 3261 . . . . . . 7 (∀𝑥𝐴 𝑤𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝑤𝑧))
1211imp 405 . . . . . 6 ((∀𝑥𝐴 𝑤𝐵 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑤𝑧)
1312adantll 710 . . . . 5 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝑤𝐵) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑤𝑧)
143, 13sylan2b 592 . . . 4 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝑤𝐵) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑤𝑧)
1514ralrimiva 3144 . . 3 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝑤𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧)
16 rnmptlb.1 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
17 breq1 5150 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
1817ralbidv 3175 . . . . 5 (𝑦 = 𝑤 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑤𝐵))
1918cbvrexvw 3233 . . . 4 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
2016, 19sylib 217 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
2115, 20reximddv3 44141 . 2 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧)
22 breq1 5150 . . . 4 (𝑤 = 𝑦 → (𝑤𝑧𝑦𝑧))
2322ralbidv 3175 . . 3 (𝑤 = 𝑦 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
2423cbvrexvw 3233 . 2 (∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
2521, 24sylib 217 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wral 3059  wrex 3068  Vcvv 3472   class class class wbr 5147  cmpt 5230  ran crn 5676  cr 11111  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-mpt 5231  df-cnv 5683  df-dm 5685  df-rn 5686
This theorem is referenced by:  infnsuprnmpt  44252  infrpgernmpt  44473
  Copyright terms: Public domain W3C validator