Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptlb Structured version   Visualization version   GIF version

Theorem rnmptlb 45267
Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
rnmptlb.1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
Assertion
Ref Expression
rnmptlb (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝜑,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rnmptlb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5938 . . . . . 6 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3464 . . . . 5 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 nfra1 3266 . . . . . . . 8 𝑥𝑥𝐴 𝑤𝐵
5 nfv 1914 . . . . . . . 8 𝑥 𝑤𝑧
6 rspa 3231 . . . . . . . . . . 11 ((∀𝑥𝐴 𝑤𝐵𝑥𝐴) → 𝑤𝐵)
763adant3 1132 . . . . . . . . . 10 ((∀𝑥𝐴 𝑤𝐵𝑥𝐴𝑧 = 𝐵) → 𝑤𝐵)
8 simp3 1138 . . . . . . . . . 10 ((∀𝑥𝐴 𝑤𝐵𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
97, 8breqtrrd 5147 . . . . . . . . 9 ((∀𝑥𝐴 𝑤𝐵𝑥𝐴𝑧 = 𝐵) → 𝑤𝑧)
1093exp 1119 . . . . . . . 8 (∀𝑥𝐴 𝑤𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝑤𝑧)))
114, 5, 10rexlimd 3249 . . . . . . 7 (∀𝑥𝐴 𝑤𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝑤𝑧))
1211imp 406 . . . . . 6 ((∀𝑥𝐴 𝑤𝐵 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑤𝑧)
1312adantll 714 . . . . 5 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝑤𝐵) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑤𝑧)
143, 13sylan2b 594 . . . 4 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝑤𝐵) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑤𝑧)
1514ralrimiva 3132 . . 3 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝑤𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧)
16 rnmptlb.1 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
17 breq1 5122 . . . . . 6 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
1817ralbidv 3163 . . . . 5 (𝑦 = 𝑤 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑤𝐵))
1918cbvrexvw 3221 . . . 4 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
2016, 19sylib 218 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
2115, 20reximddv3 3157 . 2 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧)
22 breq1 5122 . . . 4 (𝑤 = 𝑦 → (𝑤𝑧𝑦𝑧))
2322ralbidv 3163 . . 3 (𝑤 = 𝑦 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧))
2423cbvrexvw 3221 . 2 (∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
2521, 24sylib 218 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459   class class class wbr 5119  cmpt 5201  ran crn 5655  cr 11128  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-mpt 5202  df-cnv 5662  df-dm 5664  df-rn 5665
This theorem is referenced by:  infnsuprnmpt  45274  infrpgernmpt  45492
  Copyright terms: Public domain W3C validator