Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbddlem Structured version   Visualization version   GIF version

Theorem rnmptbddlem 45153
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbddlem.x 𝑥𝜑
rnmptbddlem.b (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
rnmptbddlem (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rnmptbddlem
StepHypRef Expression
1 eqid 2740 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5981 . . . . 5 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3493 . . . 4 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 rnmptbddlem.x . . . . . . . 8 𝑥𝜑
5 nfv 1913 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
64, 5nfan 1898 . . . . . . 7 𝑥(𝜑𝑦 ∈ ℝ)
7 nfra1 3290 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑦
86, 7nfan 1898 . . . . . 6 𝑥((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦)
9 nfv 1913 . . . . . 6 𝑥 𝑧𝑦
10 simp3 1138 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
11 rspa 3254 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
12113adant3 1132 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
1310, 12eqbrtrd 5188 . . . . . . . 8 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
14133exp 1119 . . . . . . 7 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
1514adantl 481 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
168, 9, 15rexlimd 3272 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
1716imp 406 . . . 4 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
183, 17sylan2b 593 . . 3 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝑦)
1918ralrimiva 3152 . 2 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
20 rnmptbddlem.b . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
2119, 20reximddv3 3178 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  cmpt 5249  ran crn 5701  cr 11183  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  rnmptbdd  45154
  Copyright terms: Public domain W3C validator