| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbddlem | Structured version Visualization version GIF version | ||
| Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| rnmptbddlem.x | ⊢ Ⅎ𝑥𝜑 |
| rnmptbddlem.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| Ref | Expression |
|---|---|
| rnmptbddlem | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | elrnmpt 5949 | . . . . 5 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
| 3 | 2 | elv 3468 | . . . 4 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
| 4 | rnmptbddlem.x | . . . . . . . 8 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfv 1913 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ ℝ | |
| 6 | 4, 5 | nfan 1898 | . . . . . . 7 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ℝ) |
| 7 | nfra1 3269 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
| 8 | 6, 7 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| 9 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
| 10 | simp3 1138 | . . . . . . . . 9 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
| 11 | rspa 3234 | . . . . . . . . . 10 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝑦) | |
| 12 | 11 | 3adant3 1132 | . . . . . . . . 9 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝐵 ≤ 𝑦) |
| 13 | 10, 12 | eqbrtrd 5145 | . . . . . . . 8 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
| 14 | 13 | 3exp 1119 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
| 16 | 8, 9, 15 | rexlimd 3252 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝑦)) |
| 17 | 16 | imp 406 | . . . 4 ⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
| 18 | 3, 17 | sylan2b 594 | . . 3 ⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑧 ≤ 𝑦) |
| 19 | 18 | ralrimiva 3133 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 20 | rnmptbddlem.b | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
| 21 | 19, 20 | reximddv3 3159 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 Vcvv 3463 class class class wbr 5123 ↦ cmpt 5205 ran crn 5666 ℝcr 11136 ≤ cle 11278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-cnv 5673 df-dm 5675 df-rn 5676 |
| This theorem is referenced by: rnmptbdd 45209 |
| Copyright terms: Public domain | W3C validator |