![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbddlem | Structured version Visualization version GIF version |
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbddlem.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbddlem.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
Ref | Expression |
---|---|
rnmptbddlem | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | elrnmpt 5955 | . . . . 5 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
3 | 2 | elv 3480 | . . . 4 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
4 | rnmptbddlem.x | . . . . . . . 8 ⊢ Ⅎ𝑥𝜑 | |
5 | nfv 1917 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ ℝ | |
6 | 4, 5 | nfan 1902 | . . . . . . 7 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ℝ) |
7 | nfra1 3281 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
8 | 6, 7 | nfan 1902 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
9 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
10 | simp3 1138 | . . . . . . . . 9 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
11 | rspa 3245 | . . . . . . . . . 10 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝑦) | |
12 | 11 | 3adant3 1132 | . . . . . . . . 9 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝐵 ≤ 𝑦) |
13 | 10, 12 | eqbrtrd 5170 | . . . . . . . 8 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
14 | 13 | 3exp 1119 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
15 | 14 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
16 | 8, 9, 15 | rexlimd 3263 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝑦)) |
17 | 16 | imp 407 | . . . 4 ⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
18 | 3, 17 | sylan2b 594 | . . 3 ⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑧 ≤ 𝑦) |
19 | 18 | ralrimiva 3146 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
20 | rnmptbddlem.b | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
21 | 19, 20 | reximddv3 43928 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 class class class wbr 5148 ↦ cmpt 5231 ran crn 5677 ℝcr 11111 ≤ cle 11251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: rnmptbdd 44034 |
Copyright terms: Public domain | W3C validator |