Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbddlem Structured version   Visualization version   GIF version

Theorem rnmptbddlem 41605
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbddlem.x 𝑥𝜑
rnmptbddlem.b (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
rnmptbddlem (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rnmptbddlem
StepHypRef Expression
1 eqid 2821 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5814 . . . . 5 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3491 . . . 4 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 rnmptbddlem.x . . . . . . . 8 𝑥𝜑
5 nfv 1915 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
64, 5nfan 1900 . . . . . . 7 𝑥(𝜑𝑦 ∈ ℝ)
7 nfra1 3219 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑦
86, 7nfan 1900 . . . . . 6 𝑥((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦)
9 nfv 1915 . . . . . 6 𝑥 𝑧𝑦
10 simp3 1134 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
11 rspa 3206 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
12113adant3 1128 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
1310, 12eqbrtrd 5074 . . . . . . . 8 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
14133exp 1115 . . . . . . 7 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
1514adantl 484 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
168, 9, 15rexlimd 3317 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
1716imp 409 . . . 4 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
183, 17sylan2b 595 . . 3 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝑦)
1918ralrimiva 3182 . 2 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
20 rnmptbddlem.b . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
2119, 20reximddv3 41510 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wnf 1784  wcel 2114  wral 3138  wrex 3139  Vcvv 3486   class class class wbr 5052  cmpt 5132  ran crn 5542  cr 10522  cle 10662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pr 5316
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-br 5053  df-opab 5115  df-mpt 5133  df-cnv 5549  df-dm 5551  df-rn 5552
This theorem is referenced by:  rnmptbdd  41606
  Copyright terms: Public domain W3C validator