| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbddlem | Structured version Visualization version GIF version | ||
| Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| rnmptbddlem.x | ⊢ Ⅎ𝑥𝜑 |
| rnmptbddlem.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| Ref | Expression |
|---|---|
| rnmptbddlem | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | elrnmpt 5969 | . . . . 5 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
| 3 | 2 | elv 3485 | . . . 4 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
| 4 | rnmptbddlem.x | . . . . . . . 8 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ ℝ | |
| 6 | 4, 5 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ℝ) |
| 7 | nfra1 3284 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
| 8 | 6, 7 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| 9 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
| 10 | simp3 1139 | . . . . . . . . 9 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
| 11 | rspa 3248 | . . . . . . . . . 10 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝑦) | |
| 12 | 11 | 3adant3 1133 | . . . . . . . . 9 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝐵 ≤ 𝑦) |
| 13 | 10, 12 | eqbrtrd 5165 | . . . . . . . 8 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
| 14 | 13 | 3exp 1120 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
| 16 | 8, 9, 15 | rexlimd 3266 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝑦)) |
| 17 | 16 | imp 406 | . . . 4 ⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
| 18 | 3, 17 | sylan2b 594 | . . 3 ⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑧 ≤ 𝑦) |
| 19 | 18 | ralrimiva 3146 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 20 | rnmptbddlem.b | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
| 21 | 19, 20 | reximddv3 3172 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 class class class wbr 5143 ↦ cmpt 5225 ran crn 5686 ℝcr 11154 ≤ cle 11296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-mpt 5226 df-cnv 5693 df-dm 5695 df-rn 5696 |
| This theorem is referenced by: rnmptbdd 45252 |
| Copyright terms: Public domain | W3C validator |