Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptbddlem | Structured version Visualization version GIF version |
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rnmptbddlem.x | ⊢ Ⅎ𝑥𝜑 |
rnmptbddlem.b | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
Ref | Expression |
---|---|
rnmptbddlem | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | elrnmpt 5862 | . . . . 5 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
3 | 2 | elv 3436 | . . . 4 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
4 | rnmptbddlem.x | . . . . . . . 8 ⊢ Ⅎ𝑥𝜑 | |
5 | nfv 1920 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ ℝ | |
6 | 4, 5 | nfan 1905 | . . . . . . 7 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ ℝ) |
7 | nfra1 3144 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
8 | 6, 7 | nfan 1905 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
9 | nfv 1920 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
10 | simp3 1136 | . . . . . . . . 9 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | |
11 | rspa 3132 | . . . . . . . . . 10 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝑦) | |
12 | 11 | 3adant3 1130 | . . . . . . . . 9 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝐵 ≤ 𝑦) |
13 | 10, 12 | eqbrtrd 5100 | . . . . . . . 8 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
14 | 13 | 3exp 1117 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
16 | 8, 9, 15 | rexlimd 3247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝑦)) |
17 | 16 | imp 406 | . . . 4 ⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
18 | 3, 17 | sylan2b 593 | . . 3 ⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑧 ≤ 𝑦) |
19 | 18 | ralrimiva 3109 | . 2 ⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
20 | rnmptbddlem.b | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
21 | 19, 20 | reximddv3 42653 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 Ⅎwnf 1789 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 Vcvv 3430 class class class wbr 5078 ↦ cmpt 5161 ran crn 5589 ℝcr 10854 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: rnmptbdd 42743 |
Copyright terms: Public domain | W3C validator |