Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbddlem Structured version   Visualization version   GIF version

Theorem rnmptbddlem 45238
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbddlem.x 𝑥𝜑
rnmptbddlem.b (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
rnmptbddlem (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rnmptbddlem
StepHypRef Expression
1 eqid 2729 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5922 . . . . 5 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3452 . . . 4 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 rnmptbddlem.x . . . . . . . 8 𝑥𝜑
5 nfv 1914 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
64, 5nfan 1899 . . . . . . 7 𝑥(𝜑𝑦 ∈ ℝ)
7 nfra1 3261 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑦
86, 7nfan 1899 . . . . . 6 𝑥((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦)
9 nfv 1914 . . . . . 6 𝑥 𝑧𝑦
10 simp3 1138 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
11 rspa 3226 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
12113adant3 1132 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
1310, 12eqbrtrd 5129 . . . . . . . 8 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
14133exp 1119 . . . . . . 7 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
1514adantl 481 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
168, 9, 15rexlimd 3244 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
1716imp 406 . . . 4 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
183, 17sylan2b 594 . . 3 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝑦)
1918ralrimiva 3125 . 2 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
20 rnmptbddlem.b . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
2119, 20reximddv3 3150 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  cmpt 5188  ran crn 5639  cr 11067  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-cnv 5646  df-dm 5648  df-rn 5649
This theorem is referenced by:  rnmptbdd  45239
  Copyright terms: Public domain W3C validator