Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptbddlem Structured version   Visualization version   GIF version

Theorem rnmptbddlem 45351
Description: Boundness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rnmptbddlem.x 𝑥𝜑
rnmptbddlem.b (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
rnmptbddlem (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝜑,𝑦,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rnmptbddlem
StepHypRef Expression
1 eqid 2731 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
21elrnmpt 5897 . . . . 5 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32elv 3441 . . . 4 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
4 rnmptbddlem.x . . . . . . . 8 𝑥𝜑
5 nfv 1915 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
64, 5nfan 1900 . . . . . . 7 𝑥(𝜑𝑦 ∈ ℝ)
7 nfra1 3256 . . . . . . 7 𝑥𝑥𝐴 𝐵𝑦
86, 7nfan 1900 . . . . . 6 𝑥((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦)
9 nfv 1915 . . . . . 6 𝑥 𝑧𝑦
10 simp3 1138 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
11 rspa 3221 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
12113adant3 1132 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
1310, 12eqbrtrd 5111 . . . . . . . 8 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
14133exp 1119 . . . . . . 7 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
1514adantl 481 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
168, 9, 15rexlimd 3239 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
1716imp 406 . . . 4 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
183, 17sylan2b 594 . . 3 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝑦)
1918ralrimiva 3124 . 2 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
20 rnmptbddlem.b . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
2119, 20reximddv3 3149 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5089  cmpt 5170  ran crn 5615  cr 11005  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  rnmptbdd  45352
  Copyright terms: Public domain W3C validator