Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupxrre Structured version   Visualization version   GIF version

Theorem liminflimsupxrre 45925
Description: A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflimsupxrre.1 (𝜑𝑀 ∈ ℤ)
liminflimsupxrre.2 𝑍 = (ℤ𝑀)
liminflimsupxrre.3 (𝜑𝐹:𝑍⟶ℝ*)
liminflimsupxrre.4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
liminflimsupxrre.5 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflimsupxrre (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem liminflimsupxrre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
2 liminflimsupxrre.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
32uztrn2 12751 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
43adantll 714 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
6 liminflimsupxrre.3 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
76fdmd 6661 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑍) → dom 𝐹 = 𝑍)
95, 8eleqtrrd 2834 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ dom 𝐹)
109ad2antrr 726 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → 𝑗 ∈ dom 𝐹)
116ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
1211ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
13 mnfxr 11169 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
1511adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
16 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ < (𝐹𝑗))
1714, 15, 16xrgtned 45431 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1817adantlr 715 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1911adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ∈ ℝ*)
20 pnfxr 11166 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → +∞ ∈ ℝ*)
22 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) < +∞)
2319, 21, 22xrltned 45466 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ≠ +∞)
2423adantr 480 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ +∞)
2512, 18, 24xrred 45473 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ)
2610, 25jca 511 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
2726expl 457 . . . . . 6 ((𝜑𝑗𝑍) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
281, 4, 27syl2anc 584 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
2928ralimdva 3144 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3029imp 406 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
316ffund 6655 . . . . 5 (𝜑 → Fun 𝐹)
32 ffvresb 7058 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3331, 32syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3433ad2antrr 726 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3530, 34mpbird 257 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
36 nfv 1915 . . . 4 𝑗𝜑
37 nfcv 2894 . . . 4 𝑗𝐹
38 liminflimsupxrre.1 . . . 4 (𝜑𝑀 ∈ ℤ)
39 liminflimsupxrre.4 . . . 4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
4036, 37, 38, 2, 6, 39limsupubuz2 45921 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞)
41 liminflimsupxrre.5 . . . 4 (𝜑 → (lim inf‘𝐹) ≠ -∞)
4236, 37, 38, 2, 6, 41liminflbuz2 45923 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
432rexanuz2 15257 . . 3 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) ↔ (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞ ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
4440, 42, 43sylanbrc 583 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)))
4535, 44reximddv3 3149 1 (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5089  dom cdm 5614  cres 5616  Fun wfun 6475  wf 6477  cfv 6481  cr 11005  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cz 12468  cuz 12732  lim supclsp 15377  lim infclsi 45859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-xneg 13011  df-ico 13251  df-fl 13696  df-limsup 15378  df-liminf 45860
This theorem is referenced by:  xlimliminflimsup  45970
  Copyright terms: Public domain W3C validator