Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupxrre Structured version   Visualization version   GIF version

Theorem liminflimsupxrre 45822
Description: A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflimsupxrre.1 (𝜑𝑀 ∈ ℤ)
liminflimsupxrre.2 𝑍 = (ℤ𝑀)
liminflimsupxrre.3 (𝜑𝐹:𝑍⟶ℝ*)
liminflimsupxrre.4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
liminflimsupxrre.5 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflimsupxrre (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem liminflimsupxrre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
2 liminflimsupxrre.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
32uztrn2 12819 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
43adantll 714 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
6 liminflimsupxrre.3 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
76fdmd 6701 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑍) → dom 𝐹 = 𝑍)
95, 8eleqtrrd 2832 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ dom 𝐹)
109ad2antrr 726 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → 𝑗 ∈ dom 𝐹)
116ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
1211ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
13 mnfxr 11238 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
1511adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
16 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ < (𝐹𝑗))
1714, 15, 16xrgtned 45325 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1817adantlr 715 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1911adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ∈ ℝ*)
20 pnfxr 11235 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → +∞ ∈ ℝ*)
22 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) < +∞)
2319, 21, 22xrltned 45360 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ≠ +∞)
2423adantr 480 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ +∞)
2512, 18, 24xrred 45368 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ)
2610, 25jca 511 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
2726expl 457 . . . . . 6 ((𝜑𝑗𝑍) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
281, 4, 27syl2anc 584 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
2928ralimdva 3146 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3029imp 406 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
316ffund 6695 . . . . 5 (𝜑 → Fun 𝐹)
32 ffvresb 7100 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3331, 32syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3433ad2antrr 726 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3530, 34mpbird 257 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
36 nfv 1914 . . . 4 𝑗𝜑
37 nfcv 2892 . . . 4 𝑗𝐹
38 liminflimsupxrre.1 . . . 4 (𝜑𝑀 ∈ ℤ)
39 liminflimsupxrre.4 . . . 4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
4036, 37, 38, 2, 6, 39limsupubuz2 45818 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞)
41 liminflimsupxrre.5 . . . 4 (𝜑 → (lim inf‘𝐹) ≠ -∞)
4236, 37, 38, 2, 6, 41liminflbuz2 45820 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
432rexanuz2 15323 . . 3 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) ↔ (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞ ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
4440, 42, 43sylanbrc 583 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)))
4535, 44reximddv3 3151 1 (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  dom cdm 5641  cres 5643  Fun wfun 6508  wf 6510  cfv 6514  cr 11074  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cz 12536  cuz 12800  lim supclsp 15443  lim infclsi 45756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-xneg 13079  df-ico 13319  df-fl 13761  df-limsup 15444  df-liminf 45757
This theorem is referenced by:  xlimliminflimsup  45867
  Copyright terms: Public domain W3C validator