Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupxrre Structured version   Visualization version   GIF version

Theorem liminflimsupxrre 43849
Description: A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflimsupxrre.1 (𝜑𝑀 ∈ ℤ)
liminflimsupxrre.2 𝑍 = (ℤ𝑀)
liminflimsupxrre.3 (𝜑𝐹:𝑍⟶ℝ*)
liminflimsupxrre.4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
liminflimsupxrre.5 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflimsupxrre (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem liminflimsupxrre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
2 liminflimsupxrre.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
32uztrn2 12716 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
43adantll 713 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
5 simpr 486 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
6 liminflimsupxrre.3 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
76fdmd 6675 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
87adantr 482 . . . . . . . . . 10 ((𝜑𝑗𝑍) → dom 𝐹 = 𝑍)
95, 8eleqtrrd 2842 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ dom 𝐹)
109ad2antrr 725 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → 𝑗 ∈ dom 𝐹)
116ffvelcdmda 7030 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
1211ad2antrr 725 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
13 mnfxr 11146 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
1511adantr 482 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
16 simpr 486 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ < (𝐹𝑗))
1714, 15, 16xrgtned 43351 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1817adantlr 714 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1911adantr 482 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ∈ ℝ*)
20 pnfxr 11143 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → +∞ ∈ ℝ*)
22 simpr 486 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) < +∞)
2319, 21, 22xrltned 43386 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ≠ +∞)
2423adantr 482 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ +∞)
2512, 18, 24xrred 43394 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ)
2610, 25jca 513 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
2726expl 459 . . . . . 6 ((𝜑𝑗𝑍) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
281, 4, 27syl2anc 585 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
2928ralimdva 3163 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3029imp 408 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
316ffund 6668 . . . . 5 (𝜑 → Fun 𝐹)
32 ffvresb 7067 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3331, 32syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3433ad2antrr 725 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3530, 34mpbird 257 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
36 nfv 1918 . . . 4 𝑗𝜑
37 nfcv 2906 . . . 4 𝑗𝐹
38 liminflimsupxrre.1 . . . 4 (𝜑𝑀 ∈ ℤ)
39 liminflimsupxrre.4 . . . 4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
4036, 37, 38, 2, 6, 39limsupubuz2 43845 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞)
41 liminflimsupxrre.5 . . . 4 (𝜑 → (lim inf‘𝐹) ≠ -∞)
4236, 37, 38, 2, 6, 41liminflbuz2 43847 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
432rexanuz2 15170 . . 3 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) ↔ (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞ ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
4440, 42, 43sylanbrc 584 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)))
4535, 44reximddv3 43162 1 (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2942  wral 3063  wrex 3072   class class class wbr 5104  dom cdm 5631  cres 5633  Fun wfun 6486  wf 6488  cfv 6492  cr 10984  +∞cpnf 11120  -∞cmnf 11121  *cxr 11122   < clt 11123  cz 12433  cuz 12697  lim supclsp 15288  lim infclsi 43783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-sup 9312  df-inf 9313  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-n0 12348  df-z 12434  df-uz 12698  df-q 12804  df-xneg 12963  df-ico 13200  df-fl 13627  df-limsup 15289  df-liminf 43784
This theorem is referenced by:  xlimliminflimsup  43894
  Copyright terms: Public domain W3C validator