Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupxrre Structured version   Visualization version   GIF version

Theorem liminflimsupxrre 45846
Description: A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflimsupxrre.1 (𝜑𝑀 ∈ ℤ)
liminflimsupxrre.2 𝑍 = (ℤ𝑀)
liminflimsupxrre.3 (𝜑𝐹:𝑍⟶ℝ*)
liminflimsupxrre.4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
liminflimsupxrre.5 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflimsupxrre (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem liminflimsupxrre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
2 liminflimsupxrre.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
32uztrn2 12871 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
43adantll 714 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
6 liminflimsupxrre.3 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
76fdmd 6716 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑍) → dom 𝐹 = 𝑍)
95, 8eleqtrrd 2837 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ dom 𝐹)
109ad2antrr 726 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → 𝑗 ∈ dom 𝐹)
116ffvelcdmda 7074 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
1211ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
13 mnfxr 11292 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
1511adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
16 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ < (𝐹𝑗))
1714, 15, 16xrgtned 45349 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1817adantlr 715 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1911adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ∈ ℝ*)
20 pnfxr 11289 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → +∞ ∈ ℝ*)
22 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) < +∞)
2319, 21, 22xrltned 45384 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ≠ +∞)
2423adantr 480 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ +∞)
2512, 18, 24xrred 45392 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ)
2610, 25jca 511 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
2726expl 457 . . . . . 6 ((𝜑𝑗𝑍) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
281, 4, 27syl2anc 584 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
2928ralimdva 3152 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3029imp 406 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
316ffund 6710 . . . . 5 (𝜑 → Fun 𝐹)
32 ffvresb 7115 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3331, 32syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3433ad2antrr 726 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3530, 34mpbird 257 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
36 nfv 1914 . . . 4 𝑗𝜑
37 nfcv 2898 . . . 4 𝑗𝐹
38 liminflimsupxrre.1 . . . 4 (𝜑𝑀 ∈ ℤ)
39 liminflimsupxrre.4 . . . 4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
4036, 37, 38, 2, 6, 39limsupubuz2 45842 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞)
41 liminflimsupxrre.5 . . . 4 (𝜑 → (lim inf‘𝐹) ≠ -∞)
4236, 37, 38, 2, 6, 41liminflbuz2 45844 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
432rexanuz2 15368 . . 3 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) ↔ (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞ ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
4440, 42, 43sylanbrc 583 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)))
4535, 44reximddv3 3157 1 (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060   class class class wbr 5119  dom cdm 5654  cres 5656  Fun wfun 6525  wf 6527  cfv 6531  cr 11128  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268   < clt 11269  cz 12588  cuz 12852  lim supclsp 15486  lim infclsi 45780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-xneg 13128  df-ico 13368  df-fl 13809  df-limsup 15487  df-liminf 45781
This theorem is referenced by:  xlimliminflimsup  45891
  Copyright terms: Public domain W3C validator