Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminflimsupxrre Structured version   Visualization version   GIF version

Theorem liminflimsupxrre 45815
Description: A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminflimsupxrre.1 (𝜑𝑀 ∈ ℤ)
liminflimsupxrre.2 𝑍 = (ℤ𝑀)
liminflimsupxrre.3 (𝜑𝐹:𝑍⟶ℝ*)
liminflimsupxrre.4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
liminflimsupxrre.5 (𝜑 → (lim inf‘𝐹) ≠ -∞)
Assertion
Ref Expression
liminflimsupxrre (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍   𝜑,𝑘

Proof of Theorem liminflimsupxrre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝜑)
2 liminflimsupxrre.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
32uztrn2 12812 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
43adantll 714 . . . . . 6 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
5 simpr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
6 liminflimsupxrre.3 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
76fdmd 6698 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑗𝑍) → dom 𝐹 = 𝑍)
95, 8eleqtrrd 2831 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ dom 𝐹)
109ad2antrr 726 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → 𝑗 ∈ dom 𝐹)
116ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
1211ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
13 mnfxr 11231 . . . . . . . . . . . 12 -∞ ∈ ℝ*
1413a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ ∈ ℝ*)
1511adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
16 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → -∞ < (𝐹𝑗))
1714, 15, 16xrgtned 45318 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1817adantlr 715 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ -∞)
1911adantr 480 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ∈ ℝ*)
20 pnfxr 11228 . . . . . . . . . . . 12 +∞ ∈ ℝ*
2120a1i 11 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → +∞ ∈ ℝ*)
22 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) < +∞)
2319, 21, 22xrltned 45353 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) → (𝐹𝑗) ≠ +∞)
2423adantr 480 . . . . . . . . 9 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ≠ +∞)
2512, 18, 24xrred 45361 . . . . . . . 8 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ)
2610, 25jca 511 . . . . . . 7 ((((𝜑𝑗𝑍) ∧ (𝐹𝑗) < +∞) ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
2726expl 457 . . . . . 6 ((𝜑𝑗𝑍) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
281, 4, 27syl2anc 584 . . . . 5 (((𝜑𝑘𝑍) ∧ 𝑗 ∈ (ℤ𝑘)) → (((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
2928ralimdva 3145 . . . 4 ((𝜑𝑘𝑍) → (∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3029imp 406 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ))
316ffund 6692 . . . . 5 (𝜑 → Fun 𝐹)
32 ffvresb 7097 . . . . 5 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3331, 32syl 17 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3433ad2antrr 726 . . 3 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → ((𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ ↔ ∀𝑗 ∈ (ℤ𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹𝑗) ∈ ℝ)))
3530, 34mpbird 257 . 2 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗))) → (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
36 nfv 1914 . . . 4 𝑗𝜑
37 nfcv 2891 . . . 4 𝑗𝐹
38 liminflimsupxrre.1 . . . 4 (𝜑𝑀 ∈ ℤ)
39 liminflimsupxrre.4 . . . 4 (𝜑 → (lim sup‘𝐹) ≠ +∞)
4036, 37, 38, 2, 6, 39limsupubuz2 45811 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞)
41 liminflimsupxrre.5 . . . 4 (𝜑 → (lim inf‘𝐹) ≠ -∞)
4236, 37, 38, 2, 6, 41liminflbuz2 45813 . . 3 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗))
432rexanuz2 15316 . . 3 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)) ↔ (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) < +∞ ∧ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-∞ < (𝐹𝑗)))
4440, 42, 43sylanbrc 583 . 2 (𝜑 → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝐹𝑗) < +∞ ∧ -∞ < (𝐹𝑗)))
4535, 44reximddv3 3150 1 (𝜑 → ∃𝑘𝑍 (𝐹 ↾ (ℤ𝑘)):(ℤ𝑘)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5107  dom cdm 5638  cres 5640  Fun wfun 6505  wf 6507  cfv 6511  cr 11067  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cz 12529  cuz 12793  lim supclsp 15436  lim infclsi 45749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-xneg 13072  df-ico 13312  df-fl 13754  df-limsup 15437  df-liminf 45750
This theorem is referenced by:  xlimliminflimsup  45860
  Copyright terms: Public domain W3C validator