| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝜑) |
| 2 | | liminflimsupxrre.2 |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 3 | 2 | uztrn2 12897 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
| 4 | 3 | adantll 714 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
| 5 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) |
| 6 | | liminflimsupxrre.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 7 | 6 | fdmd 6746 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = 𝑍) |
| 8 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → dom 𝐹 = 𝑍) |
| 9 | 5, 8 | eleqtrrd 2844 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ dom 𝐹) |
| 10 | 9 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) ∧ -∞ < (𝐹‘𝑗)) → 𝑗 ∈ dom 𝐹) |
| 11 | 6 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈
ℝ*) |
| 12 | 11 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) ∧ -∞ < (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
| 13 | | mnfxr 11318 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
| 14 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ -∞ < (𝐹‘𝑗)) → -∞ ∈
ℝ*) |
| 15 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ -∞ < (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
| 16 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ -∞ < (𝐹‘𝑗)) → -∞ < (𝐹‘𝑗)) |
| 17 | 14, 15, 16 | xrgtned 45333 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ -∞ < (𝐹‘𝑗)) → (𝐹‘𝑗) ≠ -∞) |
| 18 | 17 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) ∧ -∞ < (𝐹‘𝑗)) → (𝐹‘𝑗) ≠ -∞) |
| 19 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) → (𝐹‘𝑗) ∈
ℝ*) |
| 20 | | pnfxr 11315 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
| 21 | 20 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) → +∞ ∈
ℝ*) |
| 22 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) → (𝐹‘𝑗) < +∞) |
| 23 | 19, 21, 22 | xrltned 45368 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) → (𝐹‘𝑗) ≠ +∞) |
| 24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) ∧ -∞ < (𝐹‘𝑗)) → (𝐹‘𝑗) ≠ +∞) |
| 25 | 12, 18, 24 | xrred 45376 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) ∧ -∞ < (𝐹‘𝑗)) → (𝐹‘𝑗) ∈ ℝ) |
| 26 | 10, 25 | jca 511 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ (𝐹‘𝑗) < +∞) ∧ -∞ < (𝐹‘𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ℝ)) |
| 27 | 26 | expl 457 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝐹‘𝑗) < +∞ ∧ -∞ < (𝐹‘𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ℝ))) |
| 28 | 1, 4, 27 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((𝐹‘𝑗) < +∞ ∧ -∞ < (𝐹‘𝑗)) → (𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ℝ))) |
| 29 | 28 | ralimdva 3167 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑗) < +∞ ∧ -∞ < (𝐹‘𝑗)) → ∀𝑗 ∈ (ℤ≥‘𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ℝ))) |
| 30 | 29 | imp 406 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑗) < +∞ ∧ -∞ < (𝐹‘𝑗))) → ∀𝑗 ∈ (ℤ≥‘𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ℝ)) |
| 31 | 6 | ffund 6740 |
. . . . 5
⊢ (𝜑 → Fun 𝐹) |
| 32 | | ffvresb 7145 |
. . . . 5
⊢ (Fun
𝐹 → ((𝐹 ↾
(ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶ℝ ↔
∀𝑗 ∈
(ℤ≥‘𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ℝ))) |
| 33 | 31, 32 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶ℝ ↔
∀𝑗 ∈
(ℤ≥‘𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ℝ))) |
| 34 | 33 | ad2antrr 726 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑗) < +∞ ∧ -∞ < (𝐹‘𝑗))) → ((𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶ℝ ↔
∀𝑗 ∈
(ℤ≥‘𝑘)(𝑗 ∈ dom 𝐹 ∧ (𝐹‘𝑗) ∈ ℝ))) |
| 35 | 30, 34 | mpbird 257 |
. 2
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑗) < +∞ ∧ -∞ < (𝐹‘𝑗))) → (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶ℝ) |
| 36 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑗𝜑 |
| 37 | | nfcv 2905 |
. . . 4
⊢
Ⅎ𝑗𝐹 |
| 38 | | liminflimsupxrre.1 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 39 | | liminflimsupxrre.4 |
. . . 4
⊢ (𝜑 → (lim sup‘𝐹) ≠
+∞) |
| 40 | 36, 37, 38, 2, 6, 39 | limsupubuz2 45828 |
. . 3
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) < +∞) |
| 41 | | liminflimsupxrre.5 |
. . . 4
⊢ (𝜑 → (lim inf‘𝐹) ≠
-∞) |
| 42 | 36, 37, 38, 2, 6, 41 | liminflbuz2 45830 |
. . 3
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-∞ < (𝐹‘𝑗)) |
| 43 | 2 | rexanuz2 15388 |
. . 3
⊢
(∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)((𝐹‘𝑗) < +∞ ∧ -∞ < (𝐹‘𝑗)) ↔ (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) < +∞ ∧ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-∞ < (𝐹‘𝑗))) |
| 44 | 40, 42, 43 | sylanbrc 583 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝐹‘𝑗) < +∞ ∧ -∞ < (𝐹‘𝑗))) |
| 45 | 35, 44 | reximddv3 3172 |
1
⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶ℝ) |