Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climisp Structured version   Visualization version   GIF version

Theorem climisp 44235
Description: If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climisp.m (𝜑𝑀 ∈ ℤ)
climisp.z 𝑍 = (ℤ𝑀)
climisp.f (𝜑𝐹:𝑍⟶ℂ)
climisp.c (𝜑𝐹𝐴)
climisp.x (𝜑𝑋 ∈ ℝ+)
climisp.l ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
Assertion
Ref Expression
climisp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem climisp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . 4 𝑘(𝜑𝑗𝑍)
2 nfra1 3280 . . . 4 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
31, 2nfan 1902 . . 3 𝑘((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4 simplll 773 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
5 climisp.z . . . . . 6 𝑍 = (ℤ𝑀)
65uztrn2 12823 . . . . 5 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
76ad4ant24 752 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
8 rspa 3244 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
98simprd 496 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
109adantll 712 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
11 simpl3 1193 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
12 neqne 2947 . . . . . . 7 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
13 climisp.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ+)
1413rpred 12998 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1514ad2antrr 724 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ∈ ℝ)
16 climisp.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1716ffvelcdmda 7071 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climisp.c . . . . . . . . . . . . . 14 (𝜑𝐹𝐴)
195fvexi 6892 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ V)
2116, 20fexd 7213 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
22 eqidd 2732 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
2321, 22clim 15420 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
2418, 23mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2524simpld 495 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
2625adantr 481 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2717, 26subcld 11553 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
2827abscld 15365 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
2928adantr 481 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
30 climisp.l . . . . . . . . 9 ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
31303expa 1118 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
3215, 29, 31lensymd 11347 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3312, 32sylan2 593 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
34333adantl3 1168 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3511, 34condan 816 . . . 4 ((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = 𝐴)
364, 7, 10, 35syl3anc 1371 . . 3 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
373, 36ralrimia 3254 . 2 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
38 breq2 5145 . . . . . 6 (𝑥 = 𝑋 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
3938anbi2d 629 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4039rexralbidv 3219 . . . 4 (𝑥 = 𝑋 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4124simprd 496 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
4240, 41, 13rspcdva 3610 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
43 climisp.m . . . 4 (𝜑𝑀 ∈ ℤ)
445rexuz3 15277 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4543, 44syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4642, 45mpbird 256 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4737, 46reximddv3 43611 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  Vcvv 3473   class class class wbr 5141  wf 6528  cfv 6532  (class class class)co 7393  cc 11090  cr 11091   < clt 11230  cle 11231  cmin 11426  cz 12540  cuz 12804  +crp 12956  abscabs 15163  cli 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-clim 15414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator