Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climisp Structured version   Visualization version   GIF version

Theorem climisp 45751
Description: If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climisp.m (𝜑𝑀 ∈ ℤ)
climisp.z 𝑍 = (ℤ𝑀)
climisp.f (𝜑𝐹:𝑍⟶ℂ)
climisp.c (𝜑𝐹𝐴)
climisp.x (𝜑𝑋 ∈ ℝ+)
climisp.l ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
Assertion
Ref Expression
climisp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem climisp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑘(𝜑𝑗𝑍)
2 nfra1 3262 . . . 4 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
31, 2nfan 1899 . . 3 𝑘((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4 simplll 774 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
5 climisp.z . . . . . 6 𝑍 = (ℤ𝑀)
65uztrn2 12819 . . . . 5 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
76ad4ant24 754 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
8 rspa 3227 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
98simprd 495 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
109adantll 714 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
11 simpl3 1194 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
12 neqne 2934 . . . . . . 7 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
13 climisp.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ+)
1413rpred 13002 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1514ad2antrr 726 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ∈ ℝ)
16 climisp.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1716ffvelcdmda 7059 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climisp.c . . . . . . . . . . . . . 14 (𝜑𝐹𝐴)
195fvexi 6875 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ V)
2116, 20fexd 7204 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
22 eqidd 2731 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
2321, 22clim 15467 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
2418, 23mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2524simpld 494 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
2625adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2717, 26subcld 11540 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
2827abscld 15412 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
2928adantr 480 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
30 climisp.l . . . . . . . . 9 ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
31303expa 1118 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
3215, 29, 31lensymd 11332 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3312, 32sylan2 593 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
34333adantl3 1169 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3511, 34condan 817 . . . 4 ((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = 𝐴)
364, 7, 10, 35syl3anc 1373 . . 3 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
373, 36ralrimia 3237 . 2 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
38 breq2 5114 . . . . . 6 (𝑥 = 𝑋 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
3938anbi2d 630 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4039rexralbidv 3204 . . . 4 (𝑥 = 𝑋 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4124simprd 495 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
4240, 41, 13rspcdva 3592 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
43 climisp.m . . . 4 (𝜑𝑀 ∈ ℤ)
445rexuz3 15322 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4543, 44syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4642, 45mpbird 257 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4737, 46reximddv3 3151 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074   < clt 11215  cle 11216  cmin 11412  cz 12536  cuz 12800  +crp 12958  abscabs 15207  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator