Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climisp Structured version   Visualization version   GIF version

Theorem climisp 45667
Description: If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climisp.m (𝜑𝑀 ∈ ℤ)
climisp.z 𝑍 = (ℤ𝑀)
climisp.f (𝜑𝐹:𝑍⟶ℂ)
climisp.c (𝜑𝐹𝐴)
climisp.x (𝜑𝑋 ∈ ℝ+)
climisp.l ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
Assertion
Ref Expression
climisp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem climisp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . 4 𝑘(𝜑𝑗𝑍)
2 nfra1 3290 . . . 4 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
31, 2nfan 1898 . . 3 𝑘((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4 simplll 774 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
5 climisp.z . . . . . 6 𝑍 = (ℤ𝑀)
65uztrn2 12922 . . . . 5 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
76ad4ant24 753 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
8 rspa 3254 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
98simprd 495 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
109adantll 713 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
11 simpl3 1193 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
12 neqne 2954 . . . . . . 7 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
13 climisp.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ+)
1413rpred 13099 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1514ad2antrr 725 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ∈ ℝ)
16 climisp.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1716ffvelcdmda 7118 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climisp.c . . . . . . . . . . . . . 14 (𝜑𝐹𝐴)
195fvexi 6934 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ V)
2116, 20fexd 7264 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
22 eqidd 2741 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
2321, 22clim 15540 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
2418, 23mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2524simpld 494 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
2625adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2717, 26subcld 11647 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
2827abscld 15485 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
2928adantr 480 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
30 climisp.l . . . . . . . . 9 ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
31303expa 1118 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
3215, 29, 31lensymd 11441 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3312, 32sylan2 592 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
34333adantl3 1168 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3511, 34condan 817 . . . 4 ((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = 𝐴)
364, 7, 10, 35syl3anc 1371 . . 3 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
373, 36ralrimia 3264 . 2 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
38 breq2 5170 . . . . . 6 (𝑥 = 𝑋 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
3938anbi2d 629 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4039rexralbidv 3229 . . . 4 (𝑥 = 𝑋 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4124simprd 495 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
4240, 41, 13rspcdva 3636 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
43 climisp.m . . . 4 (𝜑𝑀 ∈ ℤ)
445rexuz3 15397 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4543, 44syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4642, 45mpbird 257 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4737, 46reximddv3 3178 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   < clt 11324  cle 11325  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator