Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
2 | | nfra1 3142 |
. . . 4
⊢
Ⅎ𝑘∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
3 | 1, 2 | nfan 1903 |
. . 3
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) |
4 | | simplll 771 |
. . . 4
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
5 | | climisp.z |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
6 | 5 | uztrn2 12530 |
. . . . 5
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
7 | 6 | ad4ant24 750 |
. . . 4
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
8 | | rspa 3130 |
. . . . . 6
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) |
9 | 8 | simprd 495 |
. . . . 5
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
10 | 9 | adantll 710 |
. . . 4
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
11 | | simpl3 1191 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹‘𝑘) = 𝐴) → (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
12 | | neqne 2950 |
. . . . . . 7
⊢ (¬
(𝐹‘𝑘) = 𝐴 → (𝐹‘𝑘) ≠ 𝐴) |
13 | | climisp.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
14 | 13 | rpred 12701 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ ℝ) |
15 | 14 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ≠ 𝐴) → 𝑋 ∈ ℝ) |
16 | | climisp.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
17 | 16 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
18 | | climisp.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
19 | 5 | fvexi 6770 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑍 ∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑍 ∈ V) |
21 | 16, 20 | fexd 7085 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∈ V) |
22 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
23 | 21, 22 | clim 15131 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)))) |
24 | 18, 23 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) |
25 | 24 | simpld 494 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℂ) |
26 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
27 | 17, 26 | subcld 11262 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − 𝐴) ∈ ℂ) |
28 | 27 | abscld 15076 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘((𝐹‘𝑘) − 𝐴)) ∈ ℝ) |
29 | 28 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ≠ 𝐴) → (abs‘((𝐹‘𝑘) − 𝐴)) ∈ ℝ) |
30 | | climisp.l |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹‘𝑘) − 𝐴))) |
31 | 30 | 3expa 1116 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹‘𝑘) − 𝐴))) |
32 | 15, 29, 31 | lensymd 11056 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ≠ 𝐴) → ¬ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
33 | 12, 32 | sylan2 592 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ¬ (𝐹‘𝑘) = 𝐴) → ¬ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
34 | 33 | 3adantl3 1166 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹‘𝑘) = 𝐴) → ¬ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) |
35 | 11, 34 | condan 814 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) → (𝐹‘𝑘) = 𝐴) |
36 | 4, 7, 10, 35 | syl3anc 1369 |
. . 3
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) = 𝐴) |
37 | 3, 36 | ralrimia 3420 |
. 2
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) = 𝐴) |
38 | | breq2 5074 |
. . . . . 6
⊢ (𝑥 = 𝑋 → ((abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) |
39 | 38 | anbi2d 628 |
. . . . 5
⊢ (𝑥 = 𝑋 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋))) |
40 | 39 | rexralbidv 3229 |
. . . 4
⊢ (𝑥 = 𝑋 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋))) |
41 | 24 | simprd 495 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥)) |
42 | 40, 41, 13 | rspcdva 3554 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) |
43 | | climisp.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
44 | 5 | rexuz3 14988 |
. . . 4
⊢ (𝑀 ∈ ℤ →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋))) |
45 | 43, 44 | syl 17 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋))) |
46 | 42, 45 | mpbird 256 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < 𝑋)) |
47 | 37, 46 | reximddv3 42589 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) = 𝐴) |