Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climisp Structured version   Visualization version   GIF version

Theorem climisp 45728
Description: If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climisp.m (𝜑𝑀 ∈ ℤ)
climisp.z 𝑍 = (ℤ𝑀)
climisp.f (𝜑𝐹:𝑍⟶ℂ)
climisp.c (𝜑𝐹𝐴)
climisp.x (𝜑𝑋 ∈ ℝ+)
climisp.l ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
Assertion
Ref Expression
climisp (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem climisp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑘(𝜑𝑗𝑍)
2 nfra1 3253 . . . 4 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
31, 2nfan 1899 . . 3 𝑘((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4 simplll 774 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
5 climisp.z . . . . . 6 𝑍 = (ℤ𝑀)
65uztrn2 12772 . . . . 5 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
76ad4ant24 754 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
8 rspa 3218 . . . . . 6 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
98simprd 495 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
109adantll 714 . . . 4 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
11 simpl3 1194 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
12 neqne 2933 . . . . . . 7 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
13 climisp.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ+)
1413rpred 12955 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
1514ad2antrr 726 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ∈ ℝ)
16 climisp.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1716ffvelcdmda 7022 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climisp.c . . . . . . . . . . . . . 14 (𝜑𝐹𝐴)
195fvexi 6840 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ∈ V)
2116, 20fexd 7167 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
22 eqidd 2730 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
2321, 22clim 15419 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
2418, 23mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2524simpld 494 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
2625adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2717, 26subcld 11493 . . . . . . . . . 10 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
2827abscld 15364 . . . . . . . . 9 ((𝜑𝑘𝑍) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
2928adantr 480 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
30 climisp.l . . . . . . . . 9 ((𝜑𝑘𝑍 ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
31303expa 1118 . . . . . . . 8 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹𝑘) − 𝐴)))
3215, 29, 31lensymd 11285 . . . . . . 7 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3312, 32sylan2 593 . . . . . 6 (((𝜑𝑘𝑍) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
34333adantl3 1169 . . . . 5 (((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)
3511, 34condan 817 . . . 4 ((𝜑𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) → (𝐹𝑘) = 𝐴)
364, 7, 10, 35syl3anc 1373 . . 3 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
373, 36ralrimia 3228 . 2 (((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
38 breq2 5099 . . . . . 6 (𝑥 = 𝑋 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
3938anbi2d 630 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4039rexralbidv 3195 . . . 4 (𝑥 = 𝑋 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4124simprd 495 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
4240, 41, 13rspcdva 3580 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
43 climisp.m . . . 4 (𝜑𝑀 ∈ ℤ)
445rexuz3 15274 . . . 4 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4543, 44syl 17 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋)))
4642, 45mpbird 257 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑋))
4737, 46reximddv3 3146 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027   < clt 11168  cle 11169  cmin 11365  cz 12489  cuz 12753  +crp 12911  abscabs 15159  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator