| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reximdd | Structured version Visualization version GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| reximdd.1 | ⊢ Ⅎ𝑥𝜑 |
| reximdd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) |
| reximdd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| reximdd | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdd.3 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | reximdd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | reximdd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) | |
| 4 | 3 | 3exp 1120 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 5 | 2, 4 | reximdai 3261 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 𝜒)) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 Ⅎwnf 1783 ∈ wcel 2108 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 df-nf 1784 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: iinss2d 45162 xlimmnfvlem2 45848 xlimmnfv 45849 xlimpnfvlem2 45852 xlimpnfv 45853 fsupdm 46857 finfdm 46861 |
| Copyright terms: Public domain | W3C validator |