Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reximdd Structured version   Visualization version   GIF version

Theorem reximdd 42239
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
reximdd.1 𝑥𝜑
reximdd.2 ((𝜑𝑥𝐴𝜓) → 𝜒)
reximdd.3 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
reximdd (𝜑 → ∃𝑥𝐴 𝜒)

Proof of Theorem reximdd
StepHypRef Expression
1 reximdd.3 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
2 reximdd.1 . . 3 𝑥𝜑
3 reximdd.2 . . . 4 ((𝜑𝑥𝐴𝜓) → 𝜒)
433exp 1120 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
52, 4reximdai 3221 . 2 (𝜑 → (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 𝜒))
61, 5mpd 15 1 (𝜑 → ∃𝑥𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088  wnf 1790  wcel 2114  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090  df-ex 1787  df-nf 1791  df-ral 3058  df-rex 3059
This theorem is referenced by:  xlimmnfvlem2  42916  xlimmnfv  42917  xlimpnfvlem2  42920  xlimpnfv  42921
  Copyright terms: Public domain W3C validator