MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rext Structured version   Visualization version   GIF version

Theorem rext 5364
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem rext
StepHypRef Expression
1 vsnid 4598 . . 3 𝑥 ∈ {𝑥}
2 snex 5354 . . . 4 {𝑥} ∈ V
3 eleq2 2827 . . . . 5 (𝑧 = {𝑥} → (𝑥𝑧𝑥 ∈ {𝑥}))
4 eleq2 2827 . . . . 5 (𝑧 = {𝑥} → (𝑦𝑧𝑦 ∈ {𝑥}))
53, 4imbi12d 345 . . . 4 (𝑧 = {𝑥} → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥})))
62, 5spcv 3544 . . 3 (∀𝑧(𝑥𝑧𝑦𝑧) → (𝑥 ∈ {𝑥} → 𝑦 ∈ {𝑥}))
71, 6mpi 20 . 2 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑦 ∈ {𝑥})
8 velsn 4577 . . 3 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
9 equcomi 2020 . . 3 (𝑦 = 𝑥𝑥 = 𝑦)
108, 9sylbi 216 . 2 (𝑦 ∈ {𝑥} → 𝑥 = 𝑦)
117, 10syl 17 1 (∀𝑧(𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wcel 2106  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator