Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version |
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcgv 3525 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 |
This theorem is referenced by: morex 3649 al0ssb 5227 rext 5358 relop 5748 dfpo2 6188 frxp 7938 findcard 8908 pssnn 8913 ssfi 8918 pssnnOLD 8969 fiint 9021 marypha1lem 9122 dfom3 9335 elom3 9336 aceq3lem 9807 dfac3 9808 dfac5lem4 9813 dfac8 9822 dfac9 9823 dfacacn 9828 dfac13 9829 kmlem1 9837 kmlem10 9846 fin23lem34 10033 fin23lem35 10034 zorn2lem7 10189 zornn0g 10192 axgroth6 10515 nnunb 12159 symggen 18993 gsumval3lem2 19422 gsumzaddlem 19437 dfac14 22677 i1fd 24750 chlimi 29497 zarclssn 31725 ddemeas 32104 dfon2lem4 33668 dfon2lem5 33669 dfon2lem7 33671 ttrclss 33706 frxp2 33718 frxp3 33724 ttac 40774 dfac11 40803 dfac21 40807 setrec2fun 46284 |
Copyright terms: Public domain | W3C validator |