| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcgv 3579 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Vcvv 3463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 |
| This theorem is referenced by: morex 3707 al0ssb 5288 rext 5433 relop 5841 dfpo2 6296 frxp 8133 frxp2 8151 findcard 9185 pssnn 9190 ssfi 9195 fiint 9348 fiintOLD 9349 marypha1lem 9455 dfom3 9669 elom3 9670 ttrclss 9742 aceq3lem 10142 dfac3 10143 dfac5lem4 10148 dfac5lem4OLD 10150 dfac8 10158 dfac9 10159 dfacacn 10164 dfac13 10165 kmlem1 10173 kmlem10 10182 fin23lem34 10368 fin23lem35 10369 zorn2lem7 10524 zornn0g 10527 axgroth6 10850 nnunb 12505 symggen 19456 gsumval3lem2 19892 gsumzaddlem 19907 dfac14 23572 i1fd 25652 chlimi 31181 ssdifidlprm 33421 zarclssn 33831 ddemeas 34196 dfon2lem4 35746 dfon2lem5 35747 dfon2lem7 35749 ttac 43011 dfac11 43037 dfac21 43041 setrec2fun 49219 |
| Copyright terms: Public domain | W3C validator |