| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcgv 3580 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 |
| This theorem is referenced by: morex 3707 al0ssb 5283 rext 5428 relop 5835 dfpo2 6290 frxp 8130 frxp2 8148 findcard 9182 pssnn 9187 ssfi 9192 fiint 9343 fiintOLD 9344 marypha1lem 9450 dfom3 9666 elom3 9667 ttrclss 9739 aceq3lem 10139 dfac3 10140 dfac5lem4 10145 dfac5lem4OLD 10147 dfac8 10155 dfac9 10156 dfacacn 10161 dfac13 10162 kmlem1 10170 kmlem10 10179 fin23lem34 10365 fin23lem35 10366 zorn2lem7 10521 zornn0g 10524 axgroth6 10847 nnunb 12502 symggen 19456 gsumval3lem2 19892 gsumzaddlem 19907 dfac14 23561 i1fd 25639 chlimi 31220 ssdifidlprm 33478 zarclssn 33909 ddemeas 34272 dfon2lem4 35809 dfon2lem5 35810 dfon2lem7 35812 ttac 43035 dfac11 43061 dfac21 43065 nregmodel 45017 setrec2fun 49536 |
| Copyright terms: Public domain | W3C validator |