| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcgv 3547 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2113 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 |
| This theorem is referenced by: morex 3674 al0ssb 5250 rext 5393 relop 5796 dfpo2 6251 frxp 8065 frxp2 8083 findcard 9084 pssnn 9089 ssfi 9093 fiint 9222 marypha1lem 9328 dfom3 9548 elom3 9549 ttrclss 9621 aceq3lem 10022 dfac3 10023 dfac5lem4 10028 dfac5lem4OLD 10030 dfac8 10038 dfac9 10039 dfacacn 10044 dfac13 10045 kmlem1 10053 kmlem10 10062 fin23lem34 10248 fin23lem35 10249 zorn2lem7 10404 zornn0g 10407 axgroth6 10730 nnunb 12388 symggen 19390 gsumval3lem2 19826 gsumzaddlem 19841 dfac14 23553 i1fd 25629 chlimi 31235 ssdifidlprm 33467 zarclssn 33958 ddemeas 34321 onvf1odlem2 35220 dfon2lem4 35900 dfon2lem5 35901 dfon2lem7 35903 ttac 43193 dfac11 43219 dfac21 43223 nregmodel 45174 setrec2fun 49853 |
| Copyright terms: Public domain | W3C validator |