| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcgv 3562 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 |
| This theorem is referenced by: morex 3690 al0ssb 5263 rext 5408 relop 5814 dfpo2 6269 frxp 8105 frxp2 8123 findcard 9127 pssnn 9132 ssfi 9137 fiint 9277 fiintOLD 9278 marypha1lem 9384 dfom3 9600 elom3 9601 ttrclss 9673 aceq3lem 10073 dfac3 10074 dfac5lem4 10079 dfac5lem4OLD 10081 dfac8 10089 dfac9 10090 dfacacn 10095 dfac13 10096 kmlem1 10104 kmlem10 10113 fin23lem34 10299 fin23lem35 10300 zorn2lem7 10455 zornn0g 10458 axgroth6 10781 nnunb 12438 symggen 19400 gsumval3lem2 19836 gsumzaddlem 19851 dfac14 23505 i1fd 25582 chlimi 31163 ssdifidlprm 33429 zarclssn 33863 ddemeas 34226 onvf1odlem2 35091 dfon2lem4 35774 dfon2lem5 35775 dfon2lem7 35777 ttac 43025 dfac11 43051 dfac21 43055 nregmodel 45007 setrec2fun 49681 |
| Copyright terms: Public domain | W3C validator |