Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version |
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcgv 3535 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 |
This theorem is referenced by: morex 3654 al0ssb 5232 rext 5364 relop 5759 dfpo2 6199 frxp 7967 findcard 8946 pssnn 8951 ssfi 8956 pssnnOLD 9040 fiint 9091 marypha1lem 9192 dfom3 9405 elom3 9406 ttrclss 9478 aceq3lem 9876 dfac3 9877 dfac5lem4 9882 dfac8 9891 dfac9 9892 dfacacn 9897 dfac13 9898 kmlem1 9906 kmlem10 9915 fin23lem34 10102 fin23lem35 10103 zorn2lem7 10258 zornn0g 10261 axgroth6 10584 nnunb 12229 symggen 19078 gsumval3lem2 19507 gsumzaddlem 19522 dfac14 22769 i1fd 24845 chlimi 29596 zarclssn 31823 ddemeas 32204 dfon2lem4 33762 dfon2lem5 33763 dfon2lem7 33765 frxp2 33791 frxp3 33797 ttac 40858 dfac11 40887 dfac21 40891 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |