MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcv Structured version   Visualization version   GIF version

Theorem spcv 3571
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
Hypotheses
Ref Expression
spcv.1 𝐴 ∈ V
spcv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcv (∀𝑥𝜑𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem spcv
StepHypRef Expression
1 spcv.1 . 2 𝐴 ∈ V
2 spcv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32spcgv 3562 . 2 (𝐴 ∈ V → (∀𝑥𝜑𝜓))
41, 3ax-mp 5 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449
This theorem is referenced by:  morex  3690  al0ssb  5263  rext  5408  relop  5814  dfpo2  6269  frxp  8105  frxp2  8123  findcard  9127  pssnn  9132  ssfi  9137  fiint  9277  fiintOLD  9278  marypha1lem  9384  dfom3  9600  elom3  9601  ttrclss  9673  aceq3lem  10073  dfac3  10074  dfac5lem4  10079  dfac5lem4OLD  10081  dfac8  10089  dfac9  10090  dfacacn  10095  dfac13  10096  kmlem1  10104  kmlem10  10113  fin23lem34  10299  fin23lem35  10300  zorn2lem7  10455  zornn0g  10458  axgroth6  10781  nnunb  12438  symggen  19400  gsumval3lem2  19836  gsumzaddlem  19851  dfac14  23505  i1fd  25582  chlimi  31163  ssdifidlprm  33429  zarclssn  33863  ddemeas  34226  onvf1odlem2  35091  dfon2lem4  35774  dfon2lem5  35775  dfon2lem7  35777  ttac  43025  dfac11  43051  dfac21  43055  nregmodel  45007  setrec2fun  49681
  Copyright terms: Public domain W3C validator