| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcgv 3580 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2107 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 |
| This theorem is referenced by: morex 3709 al0ssb 5290 rext 5435 relop 5843 dfpo2 6298 frxp 8134 frxp2 8152 findcard 9186 pssnn 9191 ssfi 9196 fiint 9349 fiintOLD 9350 marypha1lem 9456 dfom3 9670 elom3 9671 ttrclss 9743 aceq3lem 10143 dfac3 10144 dfac5lem4 10149 dfac5lem4OLD 10151 dfac8 10159 dfac9 10160 dfacacn 10165 dfac13 10166 kmlem1 10174 kmlem10 10183 fin23lem34 10369 fin23lem35 10370 zorn2lem7 10525 zornn0g 10528 axgroth6 10851 nnunb 12506 symggen 19461 gsumval3lem2 19897 gsumzaddlem 19912 dfac14 23591 i1fd 25671 chlimi 31200 ssdifidlprm 33427 zarclssn 33813 ddemeas 34178 dfon2lem4 35728 dfon2lem5 35729 dfon2lem7 35731 ttac 42993 dfac11 43019 dfac21 43023 setrec2fun 49207 |
| Copyright terms: Public domain | W3C validator |