| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcgv 3553 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 |
| This theorem is referenced by: morex 3681 al0ssb 5250 rext 5395 relop 5797 dfpo2 6248 frxp 8066 frxp2 8084 findcard 9087 pssnn 9092 ssfi 9097 fiint 9235 fiintOLD 9236 marypha1lem 9342 dfom3 9562 elom3 9563 ttrclss 9635 aceq3lem 10033 dfac3 10034 dfac5lem4 10039 dfac5lem4OLD 10041 dfac8 10049 dfac9 10050 dfacacn 10055 dfac13 10056 kmlem1 10064 kmlem10 10073 fin23lem34 10259 fin23lem35 10260 zorn2lem7 10415 zornn0g 10418 axgroth6 10741 nnunb 12398 symggen 19367 gsumval3lem2 19803 gsumzaddlem 19818 dfac14 23521 i1fd 25598 chlimi 31196 ssdifidlprm 33408 zarclssn 33842 ddemeas 34205 onvf1odlem2 35079 dfon2lem4 35762 dfon2lem5 35763 dfon2lem7 35765 ttac 43012 dfac11 43038 dfac21 43042 nregmodel 44994 setrec2fun 49681 |
| Copyright terms: Public domain | W3C validator |