![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version |
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcgv 3596 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2106 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 |
This theorem is referenced by: morex 3728 al0ssb 5314 rext 5459 relop 5864 dfpo2 6318 frxp 8150 frxp2 8168 findcard 9202 pssnn 9207 ssfi 9212 fiint 9364 fiintOLD 9365 marypha1lem 9471 dfom3 9685 elom3 9686 ttrclss 9758 aceq3lem 10158 dfac3 10159 dfac5lem4 10164 dfac5lem4OLD 10166 dfac8 10174 dfac9 10175 dfacacn 10180 dfac13 10181 kmlem1 10189 kmlem10 10198 fin23lem34 10384 fin23lem35 10385 zorn2lem7 10540 zornn0g 10543 axgroth6 10866 nnunb 12520 symggen 19503 gsumval3lem2 19939 gsumzaddlem 19954 dfac14 23642 i1fd 25730 chlimi 31263 ssdifidlprm 33466 zarclssn 33834 ddemeas 34217 dfon2lem4 35768 dfon2lem5 35769 dfon2lem7 35771 ttac 43025 dfac11 43051 dfac21 43055 setrec2fun 48923 |
Copyright terms: Public domain | W3C validator |