![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version |
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcgv 3609 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: morex 3741 al0ssb 5326 rext 5468 relop 5875 dfpo2 6327 frxp 8167 frxp2 8185 findcard 9229 pssnn 9234 ssfi 9240 fiint 9394 fiintOLD 9395 marypha1lem 9502 dfom3 9716 elom3 9717 ttrclss 9789 aceq3lem 10189 dfac3 10190 dfac5lem4 10195 dfac5lem4OLD 10197 dfac8 10205 dfac9 10206 dfacacn 10211 dfac13 10212 kmlem1 10220 kmlem10 10229 fin23lem34 10415 fin23lem35 10416 zorn2lem7 10571 zornn0g 10574 axgroth6 10897 nnunb 12549 symggen 19512 gsumval3lem2 19948 gsumzaddlem 19963 dfac14 23647 i1fd 25735 chlimi 31266 ssdifidlprm 33451 zarclssn 33819 ddemeas 34200 dfon2lem4 35750 dfon2lem5 35751 dfon2lem7 35753 ttac 42993 dfac11 43019 dfac21 43023 setrec2fun 48784 |
Copyright terms: Public domain | W3C validator |