| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcv | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcgv 3546 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: morex 3673 al0ssb 5241 rext 5384 relop 5785 dfpo2 6238 frxp 8051 frxp2 8069 findcard 9068 pssnn 9073 ssfi 9077 fiint 9206 marypha1lem 9312 dfom3 9532 elom3 9533 ttrclss 9605 aceq3lem 10006 dfac3 10007 dfac5lem4 10012 dfac5lem4OLD 10014 dfac8 10022 dfac9 10023 dfacacn 10028 dfac13 10029 kmlem1 10037 kmlem10 10046 fin23lem34 10232 fin23lem35 10233 zorn2lem7 10388 zornn0g 10391 axgroth6 10714 nnunb 12372 symggen 19377 gsumval3lem2 19813 gsumzaddlem 19828 dfac14 23528 i1fd 25604 chlimi 31206 ssdifidlprm 33415 zarclssn 33878 ddemeas 34241 onvf1odlem2 35140 dfon2lem4 35820 dfon2lem5 35821 dfon2lem7 35823 ttac 43069 dfac11 43095 dfac21 43099 nregmodel 45050 setrec2fun 49724 |
| Copyright terms: Public domain | W3C validator |