MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspwb Structured version   Visualization version   GIF version

Theorem sspwb 5344
Description: The powerclass construction preserves and reflects inclusion. Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sspw 4554 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
2 ssel 3963 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 → ({𝑥} ∈ 𝒫 𝐴 → {𝑥} ∈ 𝒫 𝐵))
3 snex 5334 . . . . . 6 {𝑥} ∈ V
43elpw 4545 . . . . 5 ({𝑥} ∈ 𝒫 𝐴 ↔ {𝑥} ⊆ 𝐴)
5 vex 3499 . . . . . 6 𝑥 ∈ V
65snss 4720 . . . . 5 (𝑥𝐴 ↔ {𝑥} ⊆ 𝐴)
74, 6bitr4i 280 . . . 4 ({𝑥} ∈ 𝒫 𝐴𝑥𝐴)
83elpw 4545 . . . . 5 ({𝑥} ∈ 𝒫 𝐵 ↔ {𝑥} ⊆ 𝐵)
95snss 4720 . . . . 5 (𝑥𝐵 ↔ {𝑥} ⊆ 𝐵)
108, 9bitr4i 280 . . . 4 ({𝑥} ∈ 𝒫 𝐵𝑥𝐵)
112, 7, 103imtr3g 297 . . 3 (𝒫 𝐴 ⊆ 𝒫 𝐵 → (𝑥𝐴𝑥𝐵))
1211ssrdv 3975 . 2 (𝒫 𝐴 ⊆ 𝒫 𝐵𝐴𝐵)
131, 12impbii 211 1 (𝐴𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wcel 2114  wss 3938  𝒫 cpw 4541  {csn 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-pw 4543  df-sn 4570  df-pr 4572
This theorem is referenced by:  ssextss  5348  pweqb  5351  wrdexgOLD  13875  psspwb  39121
  Copyright terms: Public domain W3C validator