![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version |
Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
Ref | Expression |
---|---|
vsnex | ⊢ {𝑥} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4644 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
2 | zfpair2 5439 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ {𝑥} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 {csn 4631 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: snexg 5441 rext 5459 sspwb 5460 moabex 5470 nnullss 5473 exss 5474 xpsspw 5822 funopg 6602 snnex 7777 soex 7944 opabex3d 7989 opabex3rd 7990 opabex3 7991 fo1st 8033 fo2nd 8034 mpoexxg 8099 cnvf1o 8135 sexp2 8170 sexp3 8177 naddcllem 8713 domunsn 9166 fodomr 9167 findcard2 9203 pwfilem 9354 marypha1lem 9471 brwdom2 9611 unxpwdom2 9626 elirrv 9634 epfrs 9769 dfac5lem2 10162 dfac5lem3 10163 dfac5lem4 10164 dfac5lem4OLD 10166 kmlem2 10190 isfin1-3 10424 hsmexlem4 10467 axcc2lem 10474 canthwe 10689 canthp1lem1 10690 uniwun 10778 rankcf 10815 hashmap 14471 hashbclem 14488 incexclem 15869 isfunc 17915 homaf 18084 symgvalstruct 19429 gsum2d2 20007 gsumcom2 20008 dprd2da 20077 mpfind 22149 pf1ind 22375 dishaus 23406 discmp 23422 dis2ndc 23484 dislly 23521 dis1stc 23523 unisngl 23551 1stckgen 23578 ptcmpfi 23837 isufil2 23932 cnextfval 24086 conway 27859 etasslt 27873 cofcutr 27973 lfuhgr1v0e 29286 gsumpart 33043 gsumwrd2dccat 33053 esum2dlem 34073 esum2d 34074 esumiun 34075 carsgclctunlem1 34299 eulerpartlemgs2 34362 bnj1452 35045 fobigcup 35882 elsingles 35900 fnsingle 35901 fvsingle 35902 dfiota3 35905 funpartlem 35924 altxpsspw 35959 bj-snsetex 36946 bj-elsngl 36951 f1omptsnlem 37319 mptsnunlem 37321 topdifinffinlem 37330 heiborlem3 37800 ispointN 39725 mzpincl 42722 mzpcompact2lem 42739 pwslnmlem1 43081 pwslnm 43083 mpct 45144 salexct3 46298 salgencntex 46299 salgensscntex 46300 sge0xp 46385 clnbgrval 47747 mpoexxg2 48183 |
Copyright terms: Public domain | W3C validator |