| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version | ||
| Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| vsnex | ⊢ {𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4605 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
| 2 | zfpair2 5391 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | 1 ⊢ {𝑥} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 {csn 4592 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: snexg 5393 rext 5411 sspwb 5412 moabex 5422 nnullss 5425 exss 5426 xpsspw 5775 funopg 6553 snnex 7737 soex 7900 opabex3d 7947 opabex3rd 7948 opabex3 7949 fo1st 7991 fo2nd 7992 mpoexxg 8057 cnvf1o 8093 sexp2 8128 sexp3 8135 naddcllem 8643 domunsn 9097 fodomr 9098 findcard2 9134 pwfilem 9274 marypha1lem 9391 brwdom2 9533 unxpwdom2 9548 elirrv 9556 epfrs 9691 dfac5lem2 10084 dfac5lem3 10085 dfac5lem4 10086 dfac5lem4OLD 10088 kmlem2 10112 isfin1-3 10346 hsmexlem4 10389 axcc2lem 10396 canthwe 10611 canthp1lem1 10612 uniwun 10700 rankcf 10737 hashmap 14407 hashbclem 14424 incexclem 15809 isfunc 17833 homaf 17999 symgvalstruct 19334 gsum2d2 19911 gsumcom2 19912 dprd2da 19981 mpfind 22021 pf1ind 22249 dishaus 23276 discmp 23292 dis2ndc 23354 dislly 23391 dis1stc 23393 unisngl 23421 1stckgen 23448 ptcmpfi 23707 isufil2 23802 cnextfval 23956 conway 27718 etasslt 27732 cofcutr 27839 lfuhgr1v0e 29188 gsumpart 33004 gsumwrd2dccat 33014 esum2dlem 34089 esum2d 34090 esumiun 34091 carsgclctunlem1 34315 eulerpartlemgs2 34378 bnj1452 35049 fobigcup 35895 elsingles 35913 fnsingle 35914 fvsingle 35915 dfiota3 35918 funpartlem 35937 altxpsspw 35972 bj-snsetex 36958 bj-elsngl 36963 f1omptsnlem 37331 mptsnunlem 37333 topdifinffinlem 37342 heiborlem3 37814 ispointN 39743 mzpincl 42729 mzpcompact2lem 42746 pwslnmlem1 43088 pwslnm 43090 permaxinf2lem 45009 mpct 45202 salexct3 46347 salgencntex 46348 salgensscntex 46349 sge0xp 46434 clnbgrval 47827 mpoexxg2 48330 tposideq 48880 discsntermlem 49563 |
| Copyright terms: Public domain | W3C validator |