| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version | ||
| Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| vsnex | ⊢ {𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4586 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
| 2 | zfpair2 5369 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | 1 ⊢ {𝑥} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 {csn 4573 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: snexg 5371 rext 5387 sspwb 5388 moabex 5397 nnullss 5400 exss 5401 xpsspw 5748 funopg 6515 snnex 7691 soex 7851 opabex3d 7897 opabex3rd 7898 opabex3 7899 fo1st 7941 fo2nd 7942 mpoexxg 8007 cnvf1o 8041 sexp2 8076 sexp3 8083 naddcllem 8591 domunsn 9040 fodomr 9041 findcard2 9074 pwfilem 9202 marypha1lem 9317 brwdom2 9459 unxpwdom2 9474 elirrvOLD 9484 epfrs 9621 dfac5lem2 10015 dfac5lem3 10016 dfac5lem4 10017 dfac5lem4OLD 10019 kmlem2 10043 isfin1-3 10277 hsmexlem4 10320 axcc2lem 10327 canthwe 10542 canthp1lem1 10543 uniwun 10631 rankcf 10668 hashmap 14342 hashbclem 14359 incexclem 15743 isfunc 17771 homaf 17937 symgvalstruct 19309 gsum2d2 19886 gsumcom2 19887 dprd2da 19956 mpfind 22042 pf1ind 22270 dishaus 23297 discmp 23313 dis2ndc 23375 dislly 23412 dis1stc 23414 unisngl 23442 1stckgen 23469 ptcmpfi 23728 isufil2 23823 cnextfval 23977 conway 27740 etasslt 27754 cofcutr 27868 lfuhgr1v0e 29232 gsumpart 33037 gsumwrd2dccat 33047 esum2dlem 34105 esum2d 34106 esumiun 34107 carsgclctunlem1 34330 eulerpartlemgs2 34393 bnj1452 35064 fobigcup 35942 elsingles 35960 fnsingle 35961 fvsingle 35962 dfiota3 35965 funpartlem 35986 altxpsspw 36021 bj-snsetex 37007 bj-elsngl 37012 f1omptsnlem 37380 mptsnunlem 37382 topdifinffinlem 37391 heiborlem3 37863 ispointN 39851 mzpincl 42837 mzpcompact2lem 42854 pwslnmlem1 43195 pwslnm 43197 permaxinf2lem 45115 mpct 45308 salexct3 46450 salgencntex 46451 salgensscntex 46452 sge0xp 46537 clnbgrval 47932 mpoexxg2 48448 tposideq 48998 discsntermlem 49681 |
| Copyright terms: Public domain | W3C validator |