| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version | ||
| Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| vsnex | ⊢ {𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4590 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
| 2 | zfpair2 5372 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ {𝑥} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 {csn 4577 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: snexg 5374 rext 5391 sspwb 5392 moabex 5402 nnullss 5405 exss 5406 xpsspw 5752 funopg 6516 snnex 7694 soex 7854 opabex3d 7900 opabex3rd 7901 opabex3 7902 fo1st 7944 fo2nd 7945 mpoexxg 8010 cnvf1o 8044 sexp2 8079 sexp3 8086 naddcllem 8594 domunsn 9044 fodomr 9045 findcard2 9078 pwfilem 9207 marypha1lem 9323 brwdom2 9465 unxpwdom2 9480 elirrvOLD 9490 epfrs 9627 dfac5lem2 10018 dfac5lem3 10019 dfac5lem4 10020 dfac5lem4OLD 10022 kmlem2 10046 isfin1-3 10280 hsmexlem4 10323 axcc2lem 10330 canthwe 10545 canthp1lem1 10546 uniwun 10634 rankcf 10671 hashmap 14342 hashbclem 14359 incexclem 15743 isfunc 17771 homaf 17937 symgvalstruct 19276 gsum2d2 19853 gsumcom2 19854 dprd2da 19923 mpfind 22012 pf1ind 22240 dishaus 23267 discmp 23283 dis2ndc 23345 dislly 23382 dis1stc 23384 unisngl 23412 1stckgen 23439 ptcmpfi 23698 isufil2 23793 cnextfval 23947 conway 27710 etasslt 27724 cofcutr 27837 lfuhgr1v0e 29199 gsumpart 33010 gsumwrd2dccat 33020 esum2dlem 34059 esum2d 34060 esumiun 34061 carsgclctunlem1 34285 eulerpartlemgs2 34348 bnj1452 35019 fobigcup 35878 elsingles 35896 fnsingle 35897 fvsingle 35898 dfiota3 35901 funpartlem 35920 altxpsspw 35955 bj-snsetex 36941 bj-elsngl 36946 f1omptsnlem 37314 mptsnunlem 37316 topdifinffinlem 37325 heiborlem3 37797 ispointN 39725 mzpincl 42711 mzpcompact2lem 42728 pwslnmlem1 43069 pwslnm 43071 permaxinf2lem 44990 mpct 45183 salexct3 46327 salgencntex 46328 salgensscntex 46329 sge0xp 46414 clnbgrval 47810 mpoexxg2 48326 tposideq 48876 discsntermlem 49559 |
| Copyright terms: Public domain | W3C validator |