| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version | ||
| Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| vsnex | ⊢ {𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4598 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
| 2 | zfpair2 5383 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ {𝑥} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 {csn 4585 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: snexg 5385 rext 5403 sspwb 5404 moabex 5414 nnullss 5417 exss 5418 xpsspw 5763 funopg 6534 snnex 7714 soex 7877 opabex3d 7923 opabex3rd 7924 opabex3 7925 fo1st 7967 fo2nd 7968 mpoexxg 8033 cnvf1o 8067 sexp2 8102 sexp3 8109 naddcllem 8617 domunsn 9068 fodomr 9069 findcard2 9105 pwfilem 9243 marypha1lem 9360 brwdom2 9502 unxpwdom2 9517 elirrv 9525 epfrs 9660 dfac5lem2 10053 dfac5lem3 10054 dfac5lem4 10055 dfac5lem4OLD 10057 kmlem2 10081 isfin1-3 10315 hsmexlem4 10358 axcc2lem 10365 canthwe 10580 canthp1lem1 10581 uniwun 10669 rankcf 10706 hashmap 14376 hashbclem 14393 incexclem 15778 isfunc 17806 homaf 17972 symgvalstruct 19311 gsum2d2 19888 gsumcom2 19889 dprd2da 19958 mpfind 22047 pf1ind 22275 dishaus 23302 discmp 23318 dis2ndc 23380 dislly 23417 dis1stc 23419 unisngl 23447 1stckgen 23474 ptcmpfi 23733 isufil2 23828 cnextfval 23982 conway 27745 etasslt 27759 cofcutr 27872 lfuhgr1v0e 29234 gsumpart 33040 gsumwrd2dccat 33050 esum2dlem 34075 esum2d 34076 esumiun 34077 carsgclctunlem1 34301 eulerpartlemgs2 34364 bnj1452 35035 fobigcup 35881 elsingles 35899 fnsingle 35900 fvsingle 35901 dfiota3 35904 funpartlem 35923 altxpsspw 35958 bj-snsetex 36944 bj-elsngl 36949 f1omptsnlem 37317 mptsnunlem 37319 topdifinffinlem 37328 heiborlem3 37800 ispointN 39729 mzpincl 42715 mzpcompact2lem 42732 pwslnmlem1 43074 pwslnm 43076 permaxinf2lem 44995 mpct 45188 salexct3 46333 salgencntex 46334 salgensscntex 46335 sge0xp 46420 clnbgrval 47816 mpoexxg2 48319 tposideq 48869 discsntermlem 49552 |
| Copyright terms: Public domain | W3C validator |