| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version | ||
| Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| vsnex | ⊢ {𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4598 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
| 2 | zfpair2 5383 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ {𝑥} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 {csn 4585 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: snexg 5385 rext 5403 sspwb 5404 moabex 5414 nnullss 5417 exss 5418 xpsspw 5763 funopg 6534 snnex 7714 soex 7877 opabex3d 7923 opabex3rd 7924 opabex3 7925 fo1st 7967 fo2nd 7968 mpoexxg 8033 cnvf1o 8067 sexp2 8102 sexp3 8109 naddcllem 8617 domunsn 9068 fodomr 9069 findcard2 9105 pwfilem 9243 marypha1lem 9360 brwdom2 9502 unxpwdom2 9517 elirrv 9525 epfrs 9660 dfac5lem2 10053 dfac5lem3 10054 dfac5lem4 10055 dfac5lem4OLD 10057 kmlem2 10081 isfin1-3 10315 hsmexlem4 10358 axcc2lem 10365 canthwe 10580 canthp1lem1 10581 uniwun 10669 rankcf 10706 hashmap 14376 hashbclem 14393 incexclem 15778 isfunc 17802 homaf 17968 symgvalstruct 19303 gsum2d2 19880 gsumcom2 19881 dprd2da 19950 mpfind 21990 pf1ind 22218 dishaus 23245 discmp 23261 dis2ndc 23323 dislly 23360 dis1stc 23362 unisngl 23390 1stckgen 23417 ptcmpfi 23676 isufil2 23771 cnextfval 23925 conway 27687 etasslt 27701 cofcutr 27808 lfuhgr1v0e 29157 gsumpart 32970 gsumwrd2dccat 32980 esum2dlem 34055 esum2d 34056 esumiun 34057 carsgclctunlem1 34281 eulerpartlemgs2 34344 bnj1452 35015 fobigcup 35861 elsingles 35879 fnsingle 35880 fvsingle 35881 dfiota3 35884 funpartlem 35903 altxpsspw 35938 bj-snsetex 36924 bj-elsngl 36929 f1omptsnlem 37297 mptsnunlem 37299 topdifinffinlem 37308 heiborlem3 37780 ispointN 39709 mzpincl 42695 mzpcompact2lem 42712 pwslnmlem1 43054 pwslnm 43056 permaxinf2lem 44975 mpct 45168 salexct3 46313 salgencntex 46314 salgensscntex 46315 sge0xp 46400 clnbgrval 47796 mpoexxg2 48299 tposideq 48849 discsntermlem 49532 |
| Copyright terms: Public domain | W3C validator |