![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version |
Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
Ref | Expression |
---|---|
vsnex | ⊢ {𝑥} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4661 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
2 | zfpair2 5448 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
3 | 1, 2 | eqeltri 2840 | 1 ⊢ {𝑥} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: snexg 5450 rext 5468 sspwb 5469 moabex 5479 nnullss 5482 exss 5483 xpsspw 5833 funopg 6612 snnex 7793 soex 7961 opabex3d 8006 opabex3rd 8007 opabex3 8008 fo1st 8050 fo2nd 8051 mpoexxg 8116 cnvf1o 8152 sexp2 8187 sexp3 8194 naddcllem 8732 domunsn 9193 fodomr 9194 findcard2 9230 pwfilem 9384 marypha1lem 9502 brwdom2 9642 unxpwdom2 9657 elirrv 9665 epfrs 9800 dfac5lem2 10193 dfac5lem3 10194 dfac5lem4 10195 dfac5lem4OLD 10197 kmlem2 10221 isfin1-3 10455 hsmexlem4 10498 axcc2lem 10505 canthwe 10720 canthp1lem1 10721 uniwun 10809 rankcf 10846 hashmap 14484 hashbclem 14501 incexclem 15884 isfunc 17928 homaf 18097 symgvalstruct 19438 gsum2d2 20016 gsumcom2 20017 dprd2da 20086 mpfind 22154 pf1ind 22380 dishaus 23411 discmp 23427 dis2ndc 23489 dislly 23526 dis1stc 23528 unisngl 23556 1stckgen 23583 ptcmpfi 23842 isufil2 23937 cnextfval 24091 conway 27862 etasslt 27876 cofcutr 27976 lfuhgr1v0e 29289 gsumpart 33038 esum2dlem 34056 esum2d 34057 esumiun 34058 carsgclctunlem1 34282 eulerpartlemgs2 34345 bnj1452 35028 fobigcup 35864 elsingles 35882 fnsingle 35883 fvsingle 35884 dfiota3 35887 funpartlem 35906 altxpsspw 35941 bj-snsetex 36929 bj-elsngl 36934 f1omptsnlem 37302 mptsnunlem 37304 topdifinffinlem 37313 heiborlem3 37773 ispointN 39699 mzpincl 42690 mzpcompact2lem 42707 pwslnmlem1 43049 pwslnm 43051 mpct 45108 salexct3 46263 salgencntex 46264 salgensscntex 46265 sge0xp 46350 clnbgrval 47696 mpoexxg2 48062 |
Copyright terms: Public domain | W3C validator |