| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version | ||
| Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| vsnex | ⊢ {𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4602 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
| 2 | zfpair2 5388 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ {𝑥} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 {csn 4589 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: snexg 5390 rext 5408 sspwb 5409 moabex 5419 nnullss 5422 exss 5423 xpsspw 5772 funopg 6550 snnex 7734 soex 7897 opabex3d 7944 opabex3rd 7945 opabex3 7946 fo1st 7988 fo2nd 7989 mpoexxg 8054 cnvf1o 8090 sexp2 8125 sexp3 8132 naddcllem 8640 domunsn 9091 fodomr 9092 findcard2 9128 pwfilem 9267 marypha1lem 9384 brwdom2 9526 unxpwdom2 9541 elirrv 9549 epfrs 9684 dfac5lem2 10077 dfac5lem3 10078 dfac5lem4 10079 dfac5lem4OLD 10081 kmlem2 10105 isfin1-3 10339 hsmexlem4 10382 axcc2lem 10389 canthwe 10604 canthp1lem1 10605 uniwun 10693 rankcf 10730 hashmap 14400 hashbclem 14417 incexclem 15802 isfunc 17826 homaf 17992 symgvalstruct 19327 gsum2d2 19904 gsumcom2 19905 dprd2da 19974 mpfind 22014 pf1ind 22242 dishaus 23269 discmp 23285 dis2ndc 23347 dislly 23384 dis1stc 23386 unisngl 23414 1stckgen 23441 ptcmpfi 23700 isufil2 23795 cnextfval 23949 conway 27711 etasslt 27725 cofcutr 27832 lfuhgr1v0e 29181 gsumpart 32997 gsumwrd2dccat 33007 esum2dlem 34082 esum2d 34083 esumiun 34084 carsgclctunlem1 34308 eulerpartlemgs2 34371 bnj1452 35042 fobigcup 35888 elsingles 35906 fnsingle 35907 fvsingle 35908 dfiota3 35911 funpartlem 35930 altxpsspw 35965 bj-snsetex 36951 bj-elsngl 36956 f1omptsnlem 37324 mptsnunlem 37326 topdifinffinlem 37335 heiborlem3 37807 ispointN 39736 mzpincl 42722 mzpcompact2lem 42739 pwslnmlem1 43081 pwslnm 43083 permaxinf2lem 45002 mpct 45195 salexct3 46340 salgencntex 46341 salgensscntex 46342 sge0xp 46427 clnbgrval 47823 mpoexxg2 48326 tposideq 48876 discsntermlem 49559 |
| Copyright terms: Public domain | W3C validator |