| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnex | Structured version Visualization version GIF version | ||
| Description: A singleton built on a setvar is a set. (Contributed by BJ, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| vsnex | ⊢ {𝑥} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4619 | . 2 ⊢ {𝑥} = {𝑥, 𝑥} | |
| 2 | zfpair2 5408 | . 2 ⊢ {𝑥, 𝑥} ∈ V | |
| 3 | 1, 2 | eqeltri 2831 | 1 ⊢ {𝑥} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 {csn 4606 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: snexg 5410 rext 5428 sspwb 5429 moabex 5439 nnullss 5442 exss 5443 xpsspw 5793 funopg 6575 snnex 7757 soex 7922 opabex3d 7969 opabex3rd 7970 opabex3 7971 fo1st 8013 fo2nd 8014 mpoexxg 8079 cnvf1o 8115 sexp2 8150 sexp3 8157 naddcllem 8693 domunsn 9146 fodomr 9147 findcard2 9183 pwfilem 9333 marypha1lem 9450 brwdom2 9592 unxpwdom2 9607 elirrv 9615 epfrs 9750 dfac5lem2 10143 dfac5lem3 10144 dfac5lem4 10145 dfac5lem4OLD 10147 kmlem2 10171 isfin1-3 10405 hsmexlem4 10448 axcc2lem 10455 canthwe 10670 canthp1lem1 10671 uniwun 10759 rankcf 10796 hashmap 14458 hashbclem 14475 incexclem 15857 isfunc 17882 homaf 18048 symgvalstruct 19383 gsum2d2 19960 gsumcom2 19961 dprd2da 20030 mpfind 22070 pf1ind 22298 dishaus 23325 discmp 23341 dis2ndc 23403 dislly 23440 dis1stc 23442 unisngl 23470 1stckgen 23497 ptcmpfi 23756 isufil2 23851 cnextfval 24005 conway 27768 etasslt 27782 cofcutr 27889 lfuhgr1v0e 29238 gsumpart 33056 gsumwrd2dccat 33066 esum2dlem 34128 esum2d 34129 esumiun 34130 carsgclctunlem1 34354 eulerpartlemgs2 34417 bnj1452 35088 fobigcup 35923 elsingles 35941 fnsingle 35942 fvsingle 35943 dfiota3 35946 funpartlem 35965 altxpsspw 36000 bj-snsetex 36986 bj-elsngl 36991 f1omptsnlem 37359 mptsnunlem 37361 topdifinffinlem 37370 heiborlem3 37842 ispointN 39766 mzpincl 42724 mzpcompact2lem 42741 pwslnmlem1 43083 pwslnm 43085 permaxinf2lem 45004 mpct 45192 salexct3 46338 salgencntex 46339 salgensscntex 46340 sge0xp 46425 clnbgrval 47803 mpoexxg2 48280 tposideq 48830 discsntermlem 49414 |
| Copyright terms: Public domain | W3C validator |