| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prelpwi | Structured version Visualization version GIF version | ||
| Description: If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| prelpwi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prelpw 5406 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | |
| 2 | 1 | ibi 267 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 𝒫 cpw 4563 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-pw 4565 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: inelfi 9369 elss2prb 14453 isdrs2 18267 usgrexmplef 29186 cusgrexilem2 29369 cusgrfilem2 29384 umgr2v2e 29453 vdegp1bi 29465 eupth2lem3lem5 30161 unelsiga 34124 inelpisys 34144 unelldsys 34148 measxun2 34200 saluncl 46315 prelspr 47487 prpair 47502 prproropf1olem1 47504 paireqne 47512 prprelprb 47518 isgrtri 47942 stgr1 47960 gpgprismgr4cycllem3 48087 lincvalpr 48407 ldepspr 48462 zlmodzxzldeplem3 48491 zlmodzxzldep 48493 ldepsnlinc 48497 |
| Copyright terms: Public domain | W3C validator |