Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prelpwi | Structured version Visualization version GIF version |
Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
Ref | Expression |
---|---|
prelpwi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpw 5364 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | |
2 | 1 | ibi 266 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 𝒫 cpw 4538 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-pw 4540 df-sn 4567 df-pr 4569 |
This theorem is referenced by: inelfi 9138 elss2prb 14182 isdrs2 18005 usgrexmplef 27607 cusgrexilem2 27790 cusgrfilem2 27804 umgr2v2e 27873 vdegp1bi 27885 eupth2lem3lem5 28575 unelsiga 32081 inelpisys 32101 unelldsys 32105 measxun2 32157 saluncl 43812 prelspr 44890 prpair 44905 prproropf1olem1 44907 paireqne 44915 prprelprb 44921 lincvalpr 45711 ldepspr 45766 zlmodzxzldeplem3 45795 zlmodzxzldep 45797 ldepsnlinc 45801 |
Copyright terms: Public domain | W3C validator |