| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prelpwi | Structured version Visualization version GIF version | ||
| Description: If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| prelpwi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prelpw 5421 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | |
| 2 | 1 | ibi 267 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4575 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-pw 4577 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: inelfi 9430 elss2prb 14506 isdrs2 18318 usgrexmplef 29238 cusgrexilem2 29421 cusgrfilem2 29436 umgr2v2e 29505 vdegp1bi 29517 eupth2lem3lem5 30213 unelsiga 34165 inelpisys 34185 unelldsys 34189 measxun2 34241 saluncl 46346 prelspr 47500 prpair 47515 prproropf1olem1 47517 paireqne 47525 prprelprb 47531 isgrtri 47955 stgr1 47973 gpgprismgr4cycllem3 48096 lincvalpr 48394 ldepspr 48449 zlmodzxzldeplem3 48478 zlmodzxzldep 48480 ldepsnlinc 48484 |
| Copyright terms: Public domain | W3C validator |