| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prelpwi | Structured version Visualization version GIF version | ||
| Description: If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| prelpwi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prelpw 5387 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | |
| 2 | 1 | ibi 267 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 𝒫 cpw 4550 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-pw 4552 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: inelfi 9302 elss2prb 14392 isdrs2 18209 usgrexmplef 29235 cusgrexilem2 29418 cusgrfilem2 29433 umgr2v2e 29502 vdegp1bi 29514 eupth2lem3lem5 30207 unelsiga 34142 inelpisys 34162 unelldsys 34166 measxun2 34218 saluncl 46354 prelspr 47516 prpair 47531 prproropf1olem1 47533 paireqne 47541 prprelprb 47547 isgrtri 47973 stgr1 47991 gpgprismgr4cycllem3 48127 lincvalpr 48449 ldepspr 48504 zlmodzxzldeplem3 48533 zlmodzxzldep 48535 ldepsnlinc 48539 |
| Copyright terms: Public domain | W3C validator |