MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prelpwi Structured version   Visualization version   GIF version

Theorem prelpwi 5458
Description: If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.)
Assertion
Ref Expression
prelpwi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)

Proof of Theorem prelpwi
StepHypRef Expression
1 prelpw 5457 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
21ibi 267 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  𝒫 cpw 4605  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-pw 4607  df-sn 4632  df-pr 4634
This theorem is referenced by:  inelfi  9456  elss2prb  14524  isdrs2  18364  usgrexmplef  29291  cusgrexilem2  29474  cusgrfilem2  29489  umgr2v2e  29558  vdegp1bi  29570  eupth2lem3lem5  30261  unelsiga  34115  inelpisys  34135  unelldsys  34139  measxun2  34191  saluncl  46273  prelspr  47411  prpair  47426  prproropf1olem1  47428  paireqne  47436  prprelprb  47442  isgrtri  47848  stgr1  47864  lincvalpr  48264  ldepspr  48319  zlmodzxzldeplem3  48348  zlmodzxzldep  48350  ldepsnlinc  48354
  Copyright terms: Public domain W3C validator