Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prelpwi | Structured version Visualization version GIF version |
Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
Ref | Expression |
---|---|
prelpwi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpw 5375 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | |
2 | 1 | ibi 267 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 𝒫 cpw 4539 {cpr 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-pw 4541 df-sn 4566 df-pr 4568 |
This theorem is referenced by: inelfi 9221 elss2prb 14246 isdrs2 18069 usgrexmplef 27671 cusgrexilem2 27854 cusgrfilem2 27868 umgr2v2e 27937 vdegp1bi 27949 eupth2lem3lem5 28641 unelsiga 32147 inelpisys 32167 unelldsys 32171 measxun2 32223 saluncl 43907 prelspr 44996 prpair 45011 prproropf1olem1 45013 paireqne 45021 prprelprb 45027 lincvalpr 45817 ldepspr 45872 zlmodzxzldeplem3 45901 zlmodzxzldep 45903 ldepsnlinc 45907 |
Copyright terms: Public domain | W3C validator |