![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prelpwi | Structured version Visualization version GIF version |
Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
Ref | Expression |
---|---|
prelpwi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpw 5192 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | |
2 | 1 | ibi 259 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2051 𝒫 cpw 4417 {cpr 4438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-pw 4419 df-sn 4437 df-pr 4439 |
This theorem is referenced by: inelfi 8676 elss2prb 13655 isdrs2 17420 usgrexmplef 26760 cusgrexilem2 26943 cusgrfilem2 26957 umgr2v2e 27026 vdegp1bi 27038 eupth2lem3lem5 27778 unelsiga 31071 unelldsys 31095 measxun2 31147 saluncl 42063 prelspr 43046 prpair 43061 prproropf1olem1 43063 paireqne 43071 prprelprb 43077 lincvalpr 43870 ldepspr 43925 zlmodzxzldeplem3 43954 zlmodzxzldep 43956 ldepsnlinc 43960 |
Copyright terms: Public domain | W3C validator |