| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prelpwi | Structured version Visualization version GIF version | ||
| Description: If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| prelpwi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prelpw 5393 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | |
| 2 | 1 | ibi 267 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 𝒫 cpw 4553 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-pw 4555 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: inelfi 9327 elss2prb 14413 isdrs2 18230 usgrexmplef 29222 cusgrexilem2 29405 cusgrfilem2 29420 umgr2v2e 29489 vdegp1bi 29501 eupth2lem3lem5 30194 unelsiga 34100 inelpisys 34120 unelldsys 34124 measxun2 34176 saluncl 46299 prelspr 47471 prpair 47486 prproropf1olem1 47488 paireqne 47496 prprelprb 47502 isgrtri 47928 stgr1 47946 gpgprismgr4cycllem3 48082 lincvalpr 48404 ldepspr 48459 zlmodzxzldeplem3 48488 zlmodzxzldep 48490 ldepsnlinc 48494 |
| Copyright terms: Public domain | W3C validator |