MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prelpwi Structured version   Visualization version   GIF version

Theorem prelpwi 5407
Description: If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.)
Assertion
Ref Expression
prelpwi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)

Proof of Theorem prelpwi
StepHypRef Expression
1 prelpw 5406 . 2 ((𝐴𝐶𝐵𝐶) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶))
21ibi 267 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  𝒫 cpw 4563  {cpr 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-pw 4565  df-sn 4590  df-pr 4592
This theorem is referenced by:  inelfi  9369  elss2prb  14453  isdrs2  18267  usgrexmplef  29186  cusgrexilem2  29369  cusgrfilem2  29384  umgr2v2e  29453  vdegp1bi  29465  eupth2lem3lem5  30161  unelsiga  34124  inelpisys  34144  unelldsys  34148  measxun2  34200  saluncl  46315  prelspr  47487  prpair  47502  prproropf1olem1  47504  paireqne  47512  prprelprb  47518  isgrtri  47942  stgr1  47960  gpgprismgr4cycllem3  48087  lincvalpr  48407  ldepspr  48462  zlmodzxzldeplem3  48491  zlmodzxzldep  48493  ldepsnlinc  48497
  Copyright terms: Public domain W3C validator