![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prelpwi | Structured version Visualization version GIF version |
Description: If two sets are members of a class, then the unordered pair of those two sets is a member of the powerclass of that class. (Contributed by Thierry Arnoux, 10-Mar-2017.) (Proof shortened by AV, 23-Oct-2021.) |
Ref | Expression |
---|---|
prelpwi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpw 5466 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ∈ 𝒫 𝐶)) | |
2 | 1 | ibi 267 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 𝒫 cpw 4622 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 df-pr 4651 |
This theorem is referenced by: inelfi 9487 elss2prb 14537 isdrs2 18376 usgrexmplef 29294 cusgrexilem2 29477 cusgrfilem2 29492 umgr2v2e 29561 vdegp1bi 29573 eupth2lem3lem5 30264 unelsiga 34098 inelpisys 34118 unelldsys 34122 measxun2 34174 saluncl 46238 prelspr 47360 prpair 47375 prproropf1olem1 47377 paireqne 47385 prprelprb 47391 isgrtri 47794 lincvalpr 48147 ldepspr 48202 zlmodzxzldeplem3 48231 zlmodzxzldep 48233 ldepsnlinc 48237 |
Copyright terms: Public domain | W3C validator |