Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaeqbidva Structured version   Visualization version   GIF version

Theorem riotaeqbidva 32334
Description: Equivalent wff's yield equal restricted definition binders (deduction form). (raleqbidva 3317 analog.) (Contributed by Thierry Arnoux, 29-Jan-2025.)
Hypotheses
Ref Expression
riotaeqbidva.1 (𝜑𝐴 = 𝐵)
riotaeqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
riotaeqbidva (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem riotaeqbidva
StepHypRef Expression
1 riotaeqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21riotabidva 7389 . 2 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
3 riotaeqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43riotaeqdv 7370 . 2 (𝜑 → (𝑥𝐴 𝜒) = (𝑥𝐵 𝜒))
52, 4eqtrd 2765 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  crio 7368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-ss 3958  df-uni 4905  df-iota 6495  df-riota 7369
This theorem is referenced by:  ressply1invg  33307
  Copyright terms: Public domain W3C validator