Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaeqbidva Structured version   Visualization version   GIF version

Theorem riotaeqbidva 32267
Description: Equivalent wff's yield equal restricted definition binders (deduction form). (raleqbidva 3322 analog.) (Contributed by Thierry Arnoux, 29-Jan-2025.)
Hypotheses
Ref Expression
riotaeqbidva.1 (𝜑𝐴 = 𝐵)
riotaeqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
riotaeqbidva (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem riotaeqbidva
StepHypRef Expression
1 riotaeqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21riotabidva 7390 . 2 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
3 riotaeqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43riotaeqdv 7371 . 2 (𝜑 → (𝑥𝐴 𝜒) = (𝑥𝐵 𝜒))
52, 4eqtrd 2767 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  crio 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-in 3951  df-ss 3961  df-uni 4904  df-iota 6494  df-riota 7370
This theorem is referenced by:  ressply1invg  33167
  Copyright terms: Public domain W3C validator