Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaeqbidva Structured version   Visualization version   GIF version

Theorem riotaeqbidva 32524
Description: Equivalent wff's yield equal restricted definition binders (deduction form). (raleqbidva 3340 analog.) (Contributed by Thierry Arnoux, 29-Jan-2025.)
Hypotheses
Ref Expression
riotaeqbidva.1 (𝜑𝐴 = 𝐵)
riotaeqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
riotaeqbidva (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem riotaeqbidva
StepHypRef Expression
1 riotaeqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21riotabidva 7424 . 2 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
3 riotaeqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43riotaeqdv 7405 . 2 (𝜑 → (𝑥𝐴 𝜒) = (𝑥𝐵 𝜒))
52, 4eqtrd 2780 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by:  ressply1invg  33559
  Copyright terms: Public domain W3C validator