MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaeqdv Structured version   Visualization version   GIF version

Theorem riotaeqdv 7389
Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotaeqdv.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
riotaeqdv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem riotaeqdv
StepHypRef Expression
1 riotaeqdv.1 . . . . 5 (𝜑𝐴 = 𝐵)
21eleq2d 2827 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
32anbi1d 631 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
43iotabidv 6545 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐵𝜓)))
5 df-riota 7388 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
6 df-riota 7388 . 2 (𝑥𝐵 𝜓) = (℩𝑥(𝑥𝐵𝜓))
74, 5, 63eqtr4g 2802 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cio 6512  crio 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-ss 3968  df-uni 4908  df-iota 6514  df-riota 7388
This theorem is referenced by:  riotaeqbidv  7391  grpinvpropd  19033  riotaeqbidva  32515  funtransport  36032  fvtransport  36033
  Copyright terms: Public domain W3C validator