Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaeqdv Structured version   Visualization version   GIF version

Theorem riotaeqdv 6985
 Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotaeqdv.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
riotaeqdv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem riotaeqdv
StepHypRef Expression
1 riotaeqdv.1 . . . . 5 (𝜑𝐴 = 𝐵)
21eleq2d 2870 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
32anbi1d 629 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
43iotabidv 6217 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐵𝜓)))
5 df-riota 6984 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
6 df-riota 6984 . 2 (𝑥𝐵 𝜓) = (℩𝑥(𝑥𝐵𝜓))
74, 5, 63eqtr4g 2858 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1525   ∈ wcel 2083  ℩cio 6194  ℩crio 6983 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-ext 2771 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1766  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-rex 3113  df-uni 4752  df-iota 6196  df-riota 6984 This theorem is referenced by:  riotaeqbidv  6987  grpinvpropd  17935  funtransport  33103  fvtransport  33104
 Copyright terms: Public domain W3C validator