MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaeqdv Structured version   Visualization version   GIF version

Theorem riotaeqdv 7192
Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotaeqdv.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
riotaeqdv (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem riotaeqdv
StepHypRef Expression
1 riotaeqdv.1 . . . . 5 (𝜑𝐴 = 𝐵)
21eleq2d 2825 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
32anbi1d 633 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜓)))
43iotabidv 6384 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐵𝜓)))
5 df-riota 7191 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
6 df-riota 7191 . 2 (𝑥𝐵 𝜓) = (℩𝑥(𝑥𝐵𝜓))
74, 5, 63eqtr4g 2805 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cio 6356  crio 7190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-v 3425  df-in 3890  df-ss 3900  df-uni 4836  df-iota 6358  df-riota 7191
This theorem is referenced by:  riotaeqbidv  7194  grpinvpropd  18470  funtransport  34103  fvtransport  34104
  Copyright terms: Public domain W3C validator