![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotaeqdv | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaeqdv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
riotaeqdv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqdv.1 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eleq2d 2870 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | 2 | anbi1d 629 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓))) |
4 | 3 | iotabidv 6217 | . 2 ⊢ (𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) = (℩𝑥(𝑥 ∈ 𝐵 ∧ 𝜓))) |
5 | df-riota 6984 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
6 | df-riota 6984 | . 2 ⊢ (℩𝑥 ∈ 𝐵 𝜓) = (℩𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
7 | 4, 5, 6 | 3eqtr4g 2858 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ℩cio 6194 ℩crio 6983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-rex 3113 df-uni 4752 df-iota 6196 df-riota 6984 |
This theorem is referenced by: riotaeqbidv 6987 grpinvpropd 17935 funtransport 33103 fvtransport 33104 |
Copyright terms: Public domain | W3C validator |