Proof of Theorem rmounid
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rmounid.1 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ¬ 𝜓) | 
| 2 | 1 | ex 412 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐵 → ¬ 𝜓)) | 
| 3 | 2 | con2d 134 | . . . . . . . . . 10
⊢ (𝜑 → (𝜓 → ¬ 𝑥 ∈ 𝐵)) | 
| 4 | 3 | imp 406 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑥 ∈ 𝐵) | 
| 5 |  | biorf 937 | . . . . . . . . . 10
⊢ (¬
𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴))) | 
| 6 |  | orcom 871 | . . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐴)) | 
| 7 | 5, 6 | bitr4di 289 | . . . . . . . . 9
⊢ (¬
𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | 
| 8 | 4, 7 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵))) | 
| 9 |  | elun 4153 | . . . . . . . 8
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | 
| 10 | 8, 9 | bitr4di 289 | . . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∪ 𝐵))) | 
| 11 | 10 | pm5.32da 579 | . . . . . 6
⊢ (𝜑 → ((𝜓 ∧ 𝑥 ∈ 𝐴) ↔ (𝜓 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)))) | 
| 12 | 11 | biancomd 463 | . . . . 5
⊢ (𝜑 → ((𝜓 ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜓))) | 
| 13 | 12 | bicomd 223 | . . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜓) ↔ (𝜓 ∧ 𝑥 ∈ 𝐴))) | 
| 14 | 13 | biancomd 463 | . . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) | 
| 15 | 14 | mobidv 2549 | . 2
⊢ (𝜑 → (∃*𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜓) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓))) | 
| 16 |  | df-rmo 3380 | . 2
⊢
(∃*𝑥 ∈
(𝐴 ∪ 𝐵)𝜓 ↔ ∃*𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜓)) | 
| 17 |  | df-rmo 3380 | . 2
⊢
(∃*𝑥 ∈
𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | 
| 18 | 15, 16, 17 | 3bitr4g 314 | 1
⊢ (𝜑 → (∃*𝑥 ∈ (𝐴 ∪ 𝐵)𝜓 ↔ ∃*𝑥 ∈ 𝐴 𝜓)) |