| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1invg | Structured version Visualization version GIF version | ||
| Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
| ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
| ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
| ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressply1.1 | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| ressply1invg.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ressply1invg | ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = ((invg‘𝑃)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply.1 | . . . 4 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 2 | ressply.2 | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 3 | ressply.3 | . . . 4 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 4 | ressply.4 | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
| 5 | ressply.5 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 6 | ressply1.1 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | ressply1bas 22141 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 8 | ressply1invg.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6 | ressply1add 22142 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
| 10 | 9 | anassrs 467 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
| 11 | 8, 10 | mpidan 689 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
| 12 | eqid 2731 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 13 | 1, 2, 3, 4, 5, 12 | ressply10g 33530 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 14 | 1, 2, 3, 4 | subrgply1 22145 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
| 15 | subrgrcl 20491 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝑆 ∈ Ring) | |
| 16 | ringmnd 20161 | . . . . . . . 8 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Mnd) | |
| 17 | 5, 14, 15, 16 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
| 18 | subrgsubg 20492 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
| 19 | 12 | subg0cl 19047 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → (0g‘𝑆) ∈ 𝐵) |
| 20 | 5, 14, 18, 19 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝐵) |
| 21 | eqid 2731 | . . . . . . . . 9 ⊢ (PwSer1‘𝐻) = (PwSer1‘𝐻) | |
| 22 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘(PwSer1‘𝐻)) = (Base‘(PwSer1‘𝐻)) | |
| 23 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 24 | 1, 2, 3, 4, 5, 21, 22, 23 | ressply1bas2 22140 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝐻)) ∩ (Base‘𝑆))) |
| 25 | inss2 4185 | . . . . . . . 8 ⊢ ((Base‘(PwSer1‘𝐻)) ∩ (Base‘𝑆)) ⊆ (Base‘𝑆) | |
| 26 | 24, 25 | eqsstrdi 3974 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 27 | 6, 23, 12 | ress0g 18670 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ (0g‘𝑆) ∈ 𝐵 ∧ 𝐵 ⊆ (Base‘𝑆)) → (0g‘𝑆) = (0g‘𝑃)) |
| 28 | 17, 20, 26, 27 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑃)) |
| 29 | 13, 28 | eqtr3d 2768 | . . . . 5 ⊢ (𝜑 → (0g‘𝑈) = (0g‘𝑃)) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (0g‘𝑈) = (0g‘𝑃)) |
| 31 | 11, 30 | eqeq12d 2747 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦(+g‘𝑈)𝑋) = (0g‘𝑈) ↔ (𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
| 32 | 7, 31 | riotaeqbidva 32475 | . 2 ⊢ (𝜑 → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈)) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
| 33 | eqid 2731 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 34 | eqid 2731 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 35 | eqid 2731 | . . . 4 ⊢ (invg‘𝑈) = (invg‘𝑈) | |
| 36 | 4, 33, 34, 35 | grpinvval 18893 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((invg‘𝑈)‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈))) |
| 37 | 8, 36 | syl 17 | . 2 ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈))) |
| 38 | 8, 7 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 39 | eqid 2731 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 40 | eqid 2731 | . . . 4 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 41 | eqid 2731 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 42 | eqid 2731 | . . . 4 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
| 43 | 39, 40, 41, 42 | grpinvval 18893 | . . 3 ⊢ (𝑋 ∈ (Base‘𝑃) → ((invg‘𝑃)‘𝑋) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
| 44 | 38, 43 | syl 17 | . 2 ⊢ (𝜑 → ((invg‘𝑃)‘𝑋) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
| 45 | 32, 37, 44 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = ((invg‘𝑃)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 invgcminusg 18847 SubGrpcsubg 19033 Ringcrg 20151 SubRingcsubrg 20484 PwSer1cps1 22087 Poly1cpl1 22089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-ascl 21792 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-ply1 22094 |
| This theorem is referenced by: ressply1sub 33533 |
| Copyright terms: Public domain | W3C validator |