Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1invg Structured version   Visualization version   GIF version

Theorem ressply1invg 33574
Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.1 𝑃 = (𝑆s 𝐵)
ressply1invg.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ressply1invg (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))

Proof of Theorem ressply1invg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . 4 𝑆 = (Poly1𝑅)
2 ressply.2 . . . 4 𝐻 = (𝑅s 𝑇)
3 ressply.3 . . . 4 𝑈 = (Poly1𝐻)
4 ressply.4 . . . 4 𝐵 = (Base‘𝑈)
5 ressply.5 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 ressply1.1 . . . 4 𝑃 = (𝑆s 𝐵)
71, 2, 3, 4, 5, 6ressply1bas 22246 . . 3 (𝜑𝐵 = (Base‘𝑃))
8 ressply1invg.1 . . . . 5 (𝜑𝑋𝐵)
91, 2, 3, 4, 5, 6ressply1add 22247 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑋𝐵)) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
109anassrs 467 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝑋𝐵) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
118, 10mpidan 689 . . . 4 ((𝜑𝑦𝐵) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
12 eqid 2735 . . . . . . 7 (0g𝑆) = (0g𝑆)
131, 2, 3, 4, 5, 12ressply10g 33572 . . . . . 6 (𝜑 → (0g𝑆) = (0g𝑈))
141, 2, 3, 4subrgply1 22250 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
15 subrgrcl 20593 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝑆 ∈ Ring)
16 ringmnd 20261 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
175, 14, 15, 164syl 19 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
18 subrgsubg 20594 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
1912subg0cl 19165 . . . . . . . 8 (𝐵 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝐵)
205, 14, 18, 194syl 19 . . . . . . 7 (𝜑 → (0g𝑆) ∈ 𝐵)
21 eqid 2735 . . . . . . . . 9 (PwSer1𝐻) = (PwSer1𝐻)
22 eqid 2735 . . . . . . . . 9 (Base‘(PwSer1𝐻)) = (Base‘(PwSer1𝐻))
23 eqid 2735 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
241, 2, 3, 4, 5, 21, 22, 23ressply1bas2 22245 . . . . . . . 8 (𝜑𝐵 = ((Base‘(PwSer1𝐻)) ∩ (Base‘𝑆)))
25 inss2 4246 . . . . . . . 8 ((Base‘(PwSer1𝐻)) ∩ (Base‘𝑆)) ⊆ (Base‘𝑆)
2624, 25eqsstrdi 4050 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑆))
276, 23, 12ress0g 18788 . . . . . . 7 ((𝑆 ∈ Mnd ∧ (0g𝑆) ∈ 𝐵𝐵 ⊆ (Base‘𝑆)) → (0g𝑆) = (0g𝑃))
2817, 20, 26, 27syl3anc 1370 . . . . . 6 (𝜑 → (0g𝑆) = (0g𝑃))
2913, 28eqtr3d 2777 . . . . 5 (𝜑 → (0g𝑈) = (0g𝑃))
3029adantr 480 . . . 4 ((𝜑𝑦𝐵) → (0g𝑈) = (0g𝑃))
3111, 30eqeq12d 2751 . . 3 ((𝜑𝑦𝐵) → ((𝑦(+g𝑈)𝑋) = (0g𝑈) ↔ (𝑦(+g𝑃)𝑋) = (0g𝑃)))
327, 31riotaeqbidva 32524 . 2 (𝜑 → (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
33 eqid 2735 . . . 4 (+g𝑈) = (+g𝑈)
34 eqid 2735 . . . 4 (0g𝑈) = (0g𝑈)
35 eqid 2735 . . . 4 (invg𝑈) = (invg𝑈)
364, 33, 34, 35grpinvval 19011 . . 3 (𝑋𝐵 → ((invg𝑈)‘𝑋) = (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)))
378, 36syl 17 . 2 (𝜑 → ((invg𝑈)‘𝑋) = (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)))
388, 7eleqtrd 2841 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
39 eqid 2735 . . . 4 (Base‘𝑃) = (Base‘𝑃)
40 eqid 2735 . . . 4 (+g𝑃) = (+g𝑃)
41 eqid 2735 . . . 4 (0g𝑃) = (0g𝑃)
42 eqid 2735 . . . 4 (invg𝑃) = (invg𝑃)
4339, 40, 41, 42grpinvval 19011 . . 3 (𝑋 ∈ (Base‘𝑃) → ((invg𝑃)‘𝑋) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
4438, 43syl 17 . 2 (𝜑 → ((invg𝑃)‘𝑋) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
4532, 37, 443eqtr4d 2785 1 (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cin 3962  wss 3963  cfv 6563  crio 7387  (class class class)co 7431  Basecbs 17245  s cress 17274  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760  invgcminusg 18965  SubGrpcsubg 19151  Ringcrg 20251  SubRingcsubrg 20586  PwSer1cps1 22192  Poly1cpl1 22194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-ascl 21893  df-psr 21947  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-ply1 22199
This theorem is referenced by:  ressply1sub  33575
  Copyright terms: Public domain W3C validator