Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1invg Structured version   Visualization version   GIF version

Theorem ressply1invg 33559
Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.1 𝑃 = (𝑆s 𝐵)
ressply1invg.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ressply1invg (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))

Proof of Theorem ressply1invg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . 4 𝑆 = (Poly1𝑅)
2 ressply.2 . . . 4 𝐻 = (𝑅s 𝑇)
3 ressply.3 . . . 4 𝑈 = (Poly1𝐻)
4 ressply.4 . . . 4 𝐵 = (Base‘𝑈)
5 ressply.5 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 ressply1.1 . . . 4 𝑃 = (𝑆s 𝐵)
71, 2, 3, 4, 5, 6ressply1bas 22251 . . 3 (𝜑𝐵 = (Base‘𝑃))
8 ressply1invg.1 . . . . 5 (𝜑𝑋𝐵)
91, 2, 3, 4, 5, 6ressply1add 22252 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑋𝐵)) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
109anassrs 467 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝑋𝐵) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
118, 10mpidan 688 . . . 4 ((𝜑𝑦𝐵) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
12 eqid 2740 . . . . . . 7 (0g𝑆) = (0g𝑆)
131, 2, 3, 4, 5, 12ressply10g 33557 . . . . . 6 (𝜑 → (0g𝑆) = (0g𝑈))
141, 2, 3, 4subrgply1 22255 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
15 subrgrcl 20604 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝑆 ∈ Ring)
16 ringmnd 20270 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
175, 14, 15, 164syl 19 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
18 subrgsubg 20605 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
1912subg0cl 19174 . . . . . . . 8 (𝐵 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝐵)
205, 14, 18, 194syl 19 . . . . . . 7 (𝜑 → (0g𝑆) ∈ 𝐵)
21 eqid 2740 . . . . . . . . 9 (PwSer1𝐻) = (PwSer1𝐻)
22 eqid 2740 . . . . . . . . 9 (Base‘(PwSer1𝐻)) = (Base‘(PwSer1𝐻))
23 eqid 2740 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
241, 2, 3, 4, 5, 21, 22, 23ressply1bas2 22250 . . . . . . . 8 (𝜑𝐵 = ((Base‘(PwSer1𝐻)) ∩ (Base‘𝑆)))
25 inss2 4259 . . . . . . . 8 ((Base‘(PwSer1𝐻)) ∩ (Base‘𝑆)) ⊆ (Base‘𝑆)
2624, 25eqsstrdi 4063 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑆))
276, 23, 12ress0g 18800 . . . . . . 7 ((𝑆 ∈ Mnd ∧ (0g𝑆) ∈ 𝐵𝐵 ⊆ (Base‘𝑆)) → (0g𝑆) = (0g𝑃))
2817, 20, 26, 27syl3anc 1371 . . . . . 6 (𝜑 → (0g𝑆) = (0g𝑃))
2913, 28eqtr3d 2782 . . . . 5 (𝜑 → (0g𝑈) = (0g𝑃))
3029adantr 480 . . . 4 ((𝜑𝑦𝐵) → (0g𝑈) = (0g𝑃))
3111, 30eqeq12d 2756 . . 3 ((𝜑𝑦𝐵) → ((𝑦(+g𝑈)𝑋) = (0g𝑈) ↔ (𝑦(+g𝑃)𝑋) = (0g𝑃)))
327, 31riotaeqbidva 32524 . 2 (𝜑 → (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
33 eqid 2740 . . . 4 (+g𝑈) = (+g𝑈)
34 eqid 2740 . . . 4 (0g𝑈) = (0g𝑈)
35 eqid 2740 . . . 4 (invg𝑈) = (invg𝑈)
364, 33, 34, 35grpinvval 19020 . . 3 (𝑋𝐵 → ((invg𝑈)‘𝑋) = (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)))
378, 36syl 17 . 2 (𝜑 → ((invg𝑈)‘𝑋) = (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)))
388, 7eleqtrd 2846 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
39 eqid 2740 . . . 4 (Base‘𝑃) = (Base‘𝑃)
40 eqid 2740 . . . 4 (+g𝑃) = (+g𝑃)
41 eqid 2740 . . . 4 (0g𝑃) = (0g𝑃)
42 eqid 2740 . . . 4 (invg𝑃) = (invg𝑃)
4339, 40, 41, 42grpinvval 19020 . . 3 (𝑋 ∈ (Base‘𝑃) → ((invg𝑃)‘𝑋) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
4438, 43syl 17 . 2 (𝜑 → ((invg𝑃)‘𝑋) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
4532, 37, 443eqtr4d 2790 1 (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  s cress 17287  +gcplusg 17311  0gc0g 17499  Mndcmnd 18772  invgcminusg 18974  SubGrpcsubg 19160  Ringcrg 20260  SubRingcsubrg 20595  PwSer1cps1 22197  Poly1cpl1 22199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-ascl 21898  df-psr 21952  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-ply1 22204
This theorem is referenced by:  ressply1sub  33560
  Copyright terms: Public domain W3C validator