Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1invg Structured version   Visualization version   GIF version

Theorem ressply1invg 33531
Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.1 𝑃 = (𝑆s 𝐵)
ressply1invg.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ressply1invg (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))

Proof of Theorem ressply1invg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . 4 𝑆 = (Poly1𝑅)
2 ressply.2 . . . 4 𝐻 = (𝑅s 𝑇)
3 ressply.3 . . . 4 𝑈 = (Poly1𝐻)
4 ressply.4 . . . 4 𝐵 = (Base‘𝑈)
5 ressply.5 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 ressply1.1 . . . 4 𝑃 = (𝑆s 𝐵)
71, 2, 3, 4, 5, 6ressply1bas 22146 . . 3 (𝜑𝐵 = (Base‘𝑃))
8 ressply1invg.1 . . . . 5 (𝜑𝑋𝐵)
91, 2, 3, 4, 5, 6ressply1add 22147 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑋𝐵)) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
109anassrs 467 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝑋𝐵) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
118, 10mpidan 689 . . . 4 ((𝜑𝑦𝐵) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
12 eqid 2729 . . . . . . 7 (0g𝑆) = (0g𝑆)
131, 2, 3, 4, 5, 12ressply10g 33529 . . . . . 6 (𝜑 → (0g𝑆) = (0g𝑈))
141, 2, 3, 4subrgply1 22150 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
15 subrgrcl 20496 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝑆 ∈ Ring)
16 ringmnd 20163 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
175, 14, 15, 164syl 19 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
18 subrgsubg 20497 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
1912subg0cl 19048 . . . . . . . 8 (𝐵 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝐵)
205, 14, 18, 194syl 19 . . . . . . 7 (𝜑 → (0g𝑆) ∈ 𝐵)
21 eqid 2729 . . . . . . . . 9 (PwSer1𝐻) = (PwSer1𝐻)
22 eqid 2729 . . . . . . . . 9 (Base‘(PwSer1𝐻)) = (Base‘(PwSer1𝐻))
23 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
241, 2, 3, 4, 5, 21, 22, 23ressply1bas2 22145 . . . . . . . 8 (𝜑𝐵 = ((Base‘(PwSer1𝐻)) ∩ (Base‘𝑆)))
25 inss2 4197 . . . . . . . 8 ((Base‘(PwSer1𝐻)) ∩ (Base‘𝑆)) ⊆ (Base‘𝑆)
2624, 25eqsstrdi 3988 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑆))
276, 23, 12ress0g 18671 . . . . . . 7 ((𝑆 ∈ Mnd ∧ (0g𝑆) ∈ 𝐵𝐵 ⊆ (Base‘𝑆)) → (0g𝑆) = (0g𝑃))
2817, 20, 26, 27syl3anc 1373 . . . . . 6 (𝜑 → (0g𝑆) = (0g𝑃))
2913, 28eqtr3d 2766 . . . . 5 (𝜑 → (0g𝑈) = (0g𝑃))
3029adantr 480 . . . 4 ((𝜑𝑦𝐵) → (0g𝑈) = (0g𝑃))
3111, 30eqeq12d 2745 . . 3 ((𝜑𝑦𝐵) → ((𝑦(+g𝑈)𝑋) = (0g𝑈) ↔ (𝑦(+g𝑃)𝑋) = (0g𝑃)))
327, 31riotaeqbidva 32475 . 2 (𝜑 → (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
33 eqid 2729 . . . 4 (+g𝑈) = (+g𝑈)
34 eqid 2729 . . . 4 (0g𝑈) = (0g𝑈)
35 eqid 2729 . . . 4 (invg𝑈) = (invg𝑈)
364, 33, 34, 35grpinvval 18894 . . 3 (𝑋𝐵 → ((invg𝑈)‘𝑋) = (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)))
378, 36syl 17 . 2 (𝜑 → ((invg𝑈)‘𝑋) = (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)))
388, 7eleqtrd 2830 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
39 eqid 2729 . . . 4 (Base‘𝑃) = (Base‘𝑃)
40 eqid 2729 . . . 4 (+g𝑃) = (+g𝑃)
41 eqid 2729 . . . 4 (0g𝑃) = (0g𝑃)
42 eqid 2729 . . . 4 (invg𝑃) = (invg𝑃)
4339, 40, 41, 42grpinvval 18894 . . 3 (𝑋 ∈ (Base‘𝑃) → ((invg𝑃)‘𝑋) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
4438, 43syl 17 . 2 (𝜑 → ((invg𝑃)‘𝑋) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
4532, 37, 443eqtr4d 2774 1 (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3910  wss 3911  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  s cress 17176  +gcplusg 17196  0gc0g 17378  Mndcmnd 18643  invgcminusg 18848  SubGrpcsubg 19034  Ringcrg 20153  SubRingcsubrg 20489  PwSer1cps1 22092  Poly1cpl1 22094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-ascl 21797  df-psr 21851  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-ply1 22099
This theorem is referenced by:  ressply1sub  33532
  Copyright terms: Public domain W3C validator