| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1invg | Structured version Visualization version GIF version | ||
| Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
| ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
| ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
| ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressply1.1 | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| ressply1invg.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ressply1invg | ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = ((invg‘𝑃)‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply.1 | . . . 4 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 2 | ressply.2 | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 3 | ressply.3 | . . . 4 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 4 | ressply.4 | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
| 5 | ressply.5 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 6 | ressply1.1 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | ressply1bas 22164 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 8 | ressply1invg.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6 | ressply1add 22165 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
| 10 | 9 | anassrs 467 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
| 11 | 8, 10 | mpidan 689 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
| 12 | eqid 2735 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 13 | 1, 2, 3, 4, 5, 12 | ressply10g 33580 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 14 | 1, 2, 3, 4 | subrgply1 22168 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
| 15 | subrgrcl 20536 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝑆 ∈ Ring) | |
| 16 | ringmnd 20203 | . . . . . . . 8 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Mnd) | |
| 17 | 5, 14, 15, 16 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
| 18 | subrgsubg 20537 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
| 19 | 12 | subg0cl 19117 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → (0g‘𝑆) ∈ 𝐵) |
| 20 | 5, 14, 18, 19 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝐵) |
| 21 | eqid 2735 | . . . . . . . . 9 ⊢ (PwSer1‘𝐻) = (PwSer1‘𝐻) | |
| 22 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘(PwSer1‘𝐻)) = (Base‘(PwSer1‘𝐻)) | |
| 23 | eqid 2735 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 24 | 1, 2, 3, 4, 5, 21, 22, 23 | ressply1bas2 22163 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝐻)) ∩ (Base‘𝑆))) |
| 25 | inss2 4213 | . . . . . . . 8 ⊢ ((Base‘(PwSer1‘𝐻)) ∩ (Base‘𝑆)) ⊆ (Base‘𝑆) | |
| 26 | 24, 25 | eqsstrdi 4003 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
| 27 | 6, 23, 12 | ress0g 18740 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ (0g‘𝑆) ∈ 𝐵 ∧ 𝐵 ⊆ (Base‘𝑆)) → (0g‘𝑆) = (0g‘𝑃)) |
| 28 | 17, 20, 26, 27 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑃)) |
| 29 | 13, 28 | eqtr3d 2772 | . . . . 5 ⊢ (𝜑 → (0g‘𝑈) = (0g‘𝑃)) |
| 30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (0g‘𝑈) = (0g‘𝑃)) |
| 31 | 11, 30 | eqeq12d 2751 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦(+g‘𝑈)𝑋) = (0g‘𝑈) ↔ (𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
| 32 | 7, 31 | riotaeqbidva 32477 | . 2 ⊢ (𝜑 → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈)) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
| 33 | eqid 2735 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 34 | eqid 2735 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 35 | eqid 2735 | . . . 4 ⊢ (invg‘𝑈) = (invg‘𝑈) | |
| 36 | 4, 33, 34, 35 | grpinvval 18963 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((invg‘𝑈)‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈))) |
| 37 | 8, 36 | syl 17 | . 2 ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈))) |
| 38 | 8, 7 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 39 | eqid 2735 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 40 | eqid 2735 | . . . 4 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 41 | eqid 2735 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 42 | eqid 2735 | . . . 4 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
| 43 | 39, 40, 41, 42 | grpinvval 18963 | . . 3 ⊢ (𝑋 ∈ (Base‘𝑃) → ((invg‘𝑃)‘𝑋) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
| 44 | 38, 43 | syl 17 | . 2 ⊢ (𝜑 → ((invg‘𝑃)‘𝑋) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
| 45 | 32, 37, 44 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = ((invg‘𝑃)‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 ‘cfv 6531 ℩crio 7361 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 +gcplusg 17271 0gc0g 17453 Mndcmnd 18712 invgcminusg 18917 SubGrpcsubg 19103 Ringcrg 20193 SubRingcsubrg 20529 PwSer1cps1 22110 Poly1cpl1 22112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-ascl 21815 df-psr 21869 df-mpl 21871 df-opsr 21873 df-psr1 22115 df-ply1 22117 |
| This theorem is referenced by: ressply1sub 33583 |
| Copyright terms: Public domain | W3C validator |