Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1invg Structured version   Visualization version   GIF version

Theorem ressply1invg 33513
Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.1 𝑃 = (𝑆s 𝐵)
ressply1invg.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
ressply1invg (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))

Proof of Theorem ressply1invg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressply.1 . . . 4 𝑆 = (Poly1𝑅)
2 ressply.2 . . . 4 𝐻 = (𝑅s 𝑇)
3 ressply.3 . . . 4 𝑈 = (Poly1𝐻)
4 ressply.4 . . . 4 𝐵 = (Base‘𝑈)
5 ressply.5 . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 ressply1.1 . . . 4 𝑃 = (𝑆s 𝐵)
71, 2, 3, 4, 5, 6ressply1bas 22111 . . 3 (𝜑𝐵 = (Base‘𝑃))
8 ressply1invg.1 . . . . 5 (𝜑𝑋𝐵)
91, 2, 3, 4, 5, 6ressply1add 22112 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑋𝐵)) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
109anassrs 467 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝑋𝐵) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
118, 10mpidan 689 . . . 4 ((𝜑𝑦𝐵) → (𝑦(+g𝑈)𝑋) = (𝑦(+g𝑃)𝑋))
12 eqid 2729 . . . . . . 7 (0g𝑆) = (0g𝑆)
131, 2, 3, 4, 5, 12ressply10g 33511 . . . . . 6 (𝜑 → (0g𝑆) = (0g𝑈))
141, 2, 3, 4subrgply1 22115 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
15 subrgrcl 20461 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝑆 ∈ Ring)
16 ringmnd 20128 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
175, 14, 15, 164syl 19 . . . . . . 7 (𝜑𝑆 ∈ Mnd)
18 subrgsubg 20462 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
1912subg0cl 19013 . . . . . . . 8 (𝐵 ∈ (SubGrp‘𝑆) → (0g𝑆) ∈ 𝐵)
205, 14, 18, 194syl 19 . . . . . . 7 (𝜑 → (0g𝑆) ∈ 𝐵)
21 eqid 2729 . . . . . . . . 9 (PwSer1𝐻) = (PwSer1𝐻)
22 eqid 2729 . . . . . . . . 9 (Base‘(PwSer1𝐻)) = (Base‘(PwSer1𝐻))
23 eqid 2729 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
241, 2, 3, 4, 5, 21, 22, 23ressply1bas2 22110 . . . . . . . 8 (𝜑𝐵 = ((Base‘(PwSer1𝐻)) ∩ (Base‘𝑆)))
25 inss2 4189 . . . . . . . 8 ((Base‘(PwSer1𝐻)) ∩ (Base‘𝑆)) ⊆ (Base‘𝑆)
2624, 25eqsstrdi 3980 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑆))
276, 23, 12ress0g 18636 . . . . . . 7 ((𝑆 ∈ Mnd ∧ (0g𝑆) ∈ 𝐵𝐵 ⊆ (Base‘𝑆)) → (0g𝑆) = (0g𝑃))
2817, 20, 26, 27syl3anc 1373 . . . . . 6 (𝜑 → (0g𝑆) = (0g𝑃))
2913, 28eqtr3d 2766 . . . . 5 (𝜑 → (0g𝑈) = (0g𝑃))
3029adantr 480 . . . 4 ((𝜑𝑦𝐵) → (0g𝑈) = (0g𝑃))
3111, 30eqeq12d 2745 . . 3 ((𝜑𝑦𝐵) → ((𝑦(+g𝑈)𝑋) = (0g𝑈) ↔ (𝑦(+g𝑃)𝑋) = (0g𝑃)))
327, 31riotaeqbidva 32444 . 2 (𝜑 → (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
33 eqid 2729 . . . 4 (+g𝑈) = (+g𝑈)
34 eqid 2729 . . . 4 (0g𝑈) = (0g𝑈)
35 eqid 2729 . . . 4 (invg𝑈) = (invg𝑈)
364, 33, 34, 35grpinvval 18859 . . 3 (𝑋𝐵 → ((invg𝑈)‘𝑋) = (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)))
378, 36syl 17 . 2 (𝜑 → ((invg𝑈)‘𝑋) = (𝑦𝐵 (𝑦(+g𝑈)𝑋) = (0g𝑈)))
388, 7eleqtrd 2830 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
39 eqid 2729 . . . 4 (Base‘𝑃) = (Base‘𝑃)
40 eqid 2729 . . . 4 (+g𝑃) = (+g𝑃)
41 eqid 2729 . . . 4 (0g𝑃) = (0g𝑃)
42 eqid 2729 . . . 4 (invg𝑃) = (invg𝑃)
4339, 40, 41, 42grpinvval 18859 . . 3 (𝑋 ∈ (Base‘𝑃) → ((invg𝑃)‘𝑋) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
4438, 43syl 17 . 2 (𝜑 → ((invg𝑃)‘𝑋) = (𝑦 ∈ (Base‘𝑃)(𝑦(+g𝑃)𝑋) = (0g𝑃)))
4532, 37, 443eqtr4d 2774 1 (𝜑 → ((invg𝑈)‘𝑋) = ((invg𝑃)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3902  wss 3903  cfv 6482  crio 7305  (class class class)co 7349  Basecbs 17120  s cress 17141  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608  invgcminusg 18813  SubGrpcsubg 18999  Ringcrg 20118  SubRingcsubrg 20454  PwSer1cps1 22057  Poly1cpl1 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-ascl 21762  df-psr 21816  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-ply1 22064
This theorem is referenced by:  ressply1sub  33514
  Copyright terms: Public domain W3C validator