![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1invg | Structured version Visualization version GIF version |
Description: An element of a restricted polynomial algebra has the same group inverse. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
Ref | Expression |
---|---|
ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressply1.1 | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
ressply1invg.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ressply1invg | ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = ((invg‘𝑃)‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressply.1 | . . . 4 ⊢ 𝑆 = (Poly1‘𝑅) | |
2 | ressply.2 | . . . 4 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
3 | ressply.3 | . . . 4 ⊢ 𝑈 = (Poly1‘𝐻) | |
4 | ressply.4 | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
5 | ressply.5 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
6 | ressply1.1 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | ressply1bas 21684 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
8 | ressply1invg.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 5, 6 | ressply1add 21685 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
10 | 9 | anassrs 468 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
11 | 8, 10 | mpidan 687 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝑦(+g‘𝑈)𝑋) = (𝑦(+g‘𝑃)𝑋)) |
12 | eqid 2732 | . . . . . . 7 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
13 | 1, 2, 3, 4, 5, 12 | ressply10g 32560 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
14 | 1, 2, 3, 4 | subrgply1 21688 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
15 | 5, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑆)) |
16 | subrgrcl 20319 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝑆 ∈ Ring) | |
17 | ringmnd 20026 | . . . . . . . 8 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Mnd) | |
18 | 15, 16, 17 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Mnd) |
19 | subrgsubg 20320 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
20 | 12 | subg0cl 18988 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → (0g‘𝑆) ∈ 𝐵) |
21 | 15, 19, 20 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑆) ∈ 𝐵) |
22 | eqid 2732 | . . . . . . . . 9 ⊢ (PwSer1‘𝐻) = (PwSer1‘𝐻) | |
23 | eqid 2732 | . . . . . . . . 9 ⊢ (Base‘(PwSer1‘𝐻)) = (Base‘(PwSer1‘𝐻)) | |
24 | eqid 2732 | . . . . . . . . 9 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
25 | 1, 2, 3, 4, 5, 22, 23, 24 | ressply1bas2 21683 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = ((Base‘(PwSer1‘𝐻)) ∩ (Base‘𝑆))) |
26 | inss2 4226 | . . . . . . . 8 ⊢ ((Base‘(PwSer1‘𝐻)) ∩ (Base‘𝑆)) ⊆ (Base‘𝑆) | |
27 | 25, 26 | eqsstrdi 4033 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
28 | 6, 24, 12 | ress0g 18632 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ (0g‘𝑆) ∈ 𝐵 ∧ 𝐵 ⊆ (Base‘𝑆)) → (0g‘𝑆) = (0g‘𝑃)) |
29 | 18, 21, 27, 28 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑃)) |
30 | 13, 29 | eqtr3d 2774 | . . . . 5 ⊢ (𝜑 → (0g‘𝑈) = (0g‘𝑃)) |
31 | 30 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (0g‘𝑈) = (0g‘𝑃)) |
32 | 11, 31 | eqeq12d 2748 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ((𝑦(+g‘𝑈)𝑋) = (0g‘𝑈) ↔ (𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
33 | 7, 32 | riotaeqbidva 31663 | . 2 ⊢ (𝜑 → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈)) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
34 | eqid 2732 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
35 | eqid 2732 | . . . 4 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
36 | eqid 2732 | . . . 4 ⊢ (invg‘𝑈) = (invg‘𝑈) | |
37 | 4, 34, 35, 36 | grpinvval 18842 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((invg‘𝑈)‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈))) |
38 | 8, 37 | syl 17 | . 2 ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝑈)𝑋) = (0g‘𝑈))) |
39 | 8, 7 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
40 | eqid 2732 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
41 | eqid 2732 | . . . 4 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
42 | eqid 2732 | . . . 4 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
43 | eqid 2732 | . . . 4 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
44 | 40, 41, 42, 43 | grpinvval 18842 | . . 3 ⊢ (𝑋 ∈ (Base‘𝑃) → ((invg‘𝑃)‘𝑋) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
45 | 39, 44 | syl 17 | . 2 ⊢ (𝜑 → ((invg‘𝑃)‘𝑋) = (℩𝑦 ∈ (Base‘𝑃)(𝑦(+g‘𝑃)𝑋) = (0g‘𝑃))) |
46 | 33, 38, 45 | 3eqtr4d 2782 | 1 ⊢ (𝜑 → ((invg‘𝑈)‘𝑋) = ((invg‘𝑃)‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3944 ⊆ wss 3945 ‘cfv 6533 ℩crio 7349 (class class class)co 7394 Basecbs 17128 ↾s cress 17157 +gcplusg 17181 0gc0g 17369 Mndcmnd 18604 invgcminusg 18797 SubGrpcsubg 18974 Ringcrg 20016 SubRingcsubrg 20310 PwSer1cps1 21630 Poly1cpl1 21632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7654 df-ofr 7655 df-om 7840 df-1st 7959 df-2nd 7960 df-supp 8131 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-1o 8450 df-er 8688 df-map 8807 df-pm 8808 df-ixp 8877 df-en 8925 df-dom 8926 df-sdom 8927 df-fin 8928 df-fsupp 9347 df-sup 9421 df-oi 9489 df-card 9918 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-nn 12197 df-2 12259 df-3 12260 df-4 12261 df-5 12262 df-6 12263 df-7 12264 df-8 12265 df-9 12266 df-n0 12457 df-z 12543 df-dec 12662 df-uz 12807 df-fz 13469 df-fzo 13612 df-seq 13951 df-hash 14275 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17129 df-ress 17158 df-plusg 17194 df-mulr 17195 df-sca 17197 df-vsca 17198 df-ip 17199 df-tset 17200 df-ple 17201 df-ds 17203 df-hom 17205 df-cco 17206 df-0g 17371 df-gsum 17372 df-prds 17377 df-pws 17379 df-mre 17514 df-mrc 17515 df-acs 17517 df-mgm 18545 df-sgrp 18594 df-mnd 18605 df-mhm 18649 df-submnd 18650 df-grp 18799 df-minusg 18800 df-sbg 18801 df-mulg 18925 df-subg 18977 df-ghm 19058 df-cntz 19149 df-cmn 19616 df-abl 19617 df-mgp 19949 df-ur 19966 df-ring 20018 df-subrg 20312 df-lmod 20424 df-lss 20494 df-ascl 21345 df-psr 21395 df-mpl 21397 df-opsr 21399 df-psr1 21635 df-ply1 21637 |
This theorem is referenced by: ressply1sub 32563 |
Copyright terms: Public domain | W3C validator |