![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-fakeuninass | Structured version Visualization version GIF version |
Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.) |
Ref | Expression |
---|---|
rp-fakeuninass | ⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rp-fakeinunass 43477 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐶 ∩ 𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵 ∪ 𝐴))) | |
2 | eqcom 2747 | . 2 ⊢ (((𝐶 ∩ 𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵 ∪ 𝐴)) ↔ (𝐶 ∩ (𝐵 ∪ 𝐴)) = ((𝐶 ∩ 𝐵) ∪ 𝐴)) | |
3 | incom 4230 | . . . 4 ⊢ (𝐶 ∩ (𝐵 ∪ 𝐴)) = ((𝐵 ∪ 𝐴) ∩ 𝐶) | |
4 | uncom 4181 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
5 | 4 | ineq1i 4237 | . . . 4 ⊢ ((𝐵 ∪ 𝐴) ∩ 𝐶) = ((𝐴 ∪ 𝐵) ∩ 𝐶) |
6 | 3, 5 | eqtri 2768 | . . 3 ⊢ (𝐶 ∩ (𝐵 ∪ 𝐴)) = ((𝐴 ∪ 𝐵) ∩ 𝐶) |
7 | uncom 4181 | . . . 4 ⊢ ((𝐶 ∩ 𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐶 ∩ 𝐵)) | |
8 | incom 4230 | . . . . 5 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
9 | 8 | uneq2i 4188 | . . . 4 ⊢ (𝐴 ∪ (𝐶 ∩ 𝐵)) = (𝐴 ∪ (𝐵 ∩ 𝐶)) |
10 | 7, 9 | eqtri 2768 | . . 3 ⊢ ((𝐶 ∩ 𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐵 ∩ 𝐶)) |
11 | 6, 10 | eqeq12i 2758 | . 2 ⊢ ((𝐶 ∩ (𝐵 ∪ 𝐴)) = ((𝐶 ∩ 𝐵) ∪ 𝐴) ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) |
12 | 1, 2, 11 | 3bitri 297 | 1 ⊢ (𝐴 ⊆ 𝐶 ↔ ((𝐴 ∪ 𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵 ∩ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |