Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-fakeuninass Structured version   Visualization version   GIF version

Theorem rp-fakeuninass 41021
Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.)
Assertion
Ref Expression
rp-fakeuninass (𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))

Proof of Theorem rp-fakeuninass
StepHypRef Expression
1 rp-fakeinunass 41020 . 2 (𝐴𝐶 ↔ ((𝐶𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵𝐴)))
2 eqcom 2745 . 2 (((𝐶𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵𝐴)) ↔ (𝐶 ∩ (𝐵𝐴)) = ((𝐶𝐵) ∪ 𝐴))
3 incom 4131 . . . 4 (𝐶 ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ 𝐶)
4 uncom 4083 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
54ineq1i 4139 . . . 4 ((𝐵𝐴) ∩ 𝐶) = ((𝐴𝐵) ∩ 𝐶)
63, 5eqtri 2766 . . 3 (𝐶 ∩ (𝐵𝐴)) = ((𝐴𝐵) ∩ 𝐶)
7 uncom 4083 . . . 4 ((𝐶𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐶𝐵))
8 incom 4131 . . . . 5 (𝐶𝐵) = (𝐵𝐶)
98uneq2i 4090 . . . 4 (𝐴 ∪ (𝐶𝐵)) = (𝐴 ∪ (𝐵𝐶))
107, 9eqtri 2766 . . 3 ((𝐶𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐵𝐶))
116, 10eqeq12i 2756 . 2 ((𝐶 ∩ (𝐵𝐴)) = ((𝐶𝐵) ∪ 𝐴) ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
121, 2, 113bitri 296 1 (𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  cun 3881  cin 3882  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-un 3888  df-in 3890  df-ss 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator