Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-fakeuninass Structured version   Visualization version   GIF version

Theorem rp-fakeuninass 39889
Description: A special case where a mixture of union and intersection appears to conform to a mixed associative law. (Contributed by RP, 29-Feb-2020.)
Assertion
Ref Expression
rp-fakeuninass (𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))

Proof of Theorem rp-fakeuninass
StepHypRef Expression
1 rp-fakeinunass 39888 . 2 (𝐴𝐶 ↔ ((𝐶𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵𝐴)))
2 eqcom 2830 . 2 (((𝐶𝐵) ∪ 𝐴) = (𝐶 ∩ (𝐵𝐴)) ↔ (𝐶 ∩ (𝐵𝐴)) = ((𝐶𝐵) ∪ 𝐴))
3 incom 4180 . . . 4 (𝐶 ∩ (𝐵𝐴)) = ((𝐵𝐴) ∩ 𝐶)
4 uncom 4131 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
54ineq1i 4187 . . . 4 ((𝐵𝐴) ∩ 𝐶) = ((𝐴𝐵) ∩ 𝐶)
63, 5eqtri 2846 . . 3 (𝐶 ∩ (𝐵𝐴)) = ((𝐴𝐵) ∩ 𝐶)
7 uncom 4131 . . . 4 ((𝐶𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐶𝐵))
8 incom 4180 . . . . 5 (𝐶𝐵) = (𝐵𝐶)
98uneq2i 4138 . . . 4 (𝐴 ∪ (𝐶𝐵)) = (𝐴 ∪ (𝐵𝐶))
107, 9eqtri 2846 . . 3 ((𝐶𝐵) ∪ 𝐴) = (𝐴 ∪ (𝐵𝐶))
116, 10eqeq12i 2838 . 2 ((𝐶 ∩ (𝐵𝐴)) = ((𝐶𝐵) ∪ 𝐴) ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
121, 2, 113bitri 299 1 (𝐴𝐶 ↔ ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∪ (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  cun 3936  cin 3937  wss 3938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-un 3943  df-in 3945  df-ss 3954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator