Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-isfinite5 Structured version   Visualization version   GIF version

Theorem rp-isfinite5 40844
Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by RP, 3-Mar-2020.)
Assertion
Ref Expression
rp-isfinite5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rp-isfinite5
StepHypRef Expression
1 fvex 6751 . . . 4 (♯‘𝐴) ∈ V
2 hashcl 13953 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3 isfinite4 13959 . . . . . 6 (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴)
43biimpi 219 . . . . 5 (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴)
52, 4jca 515 . . . 4 (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴))
6 eleq1 2827 . . . . . 6 (𝑛 = (♯‘𝐴) → (𝑛 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0))
7 oveq2 7242 . . . . . . 7 (𝑛 = (♯‘𝐴) → (1...𝑛) = (1...(♯‘𝐴)))
87breq1d 5079 . . . . . 6 (𝑛 = (♯‘𝐴) → ((1...𝑛) ≈ 𝐴 ↔ (1...(♯‘𝐴)) ≈ 𝐴))
96, 8anbi12d 634 . . . . 5 (𝑛 = (♯‘𝐴) → ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴)))
109spcegv 3526 . . . 4 ((♯‘𝐴) ∈ V → (((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴) → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)))
111, 5, 10mpsyl 68 . . 3 (𝐴 ∈ Fin → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
12 df-rex 3069 . . 3 (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))
1311, 12sylibr 237 . 2 (𝐴 ∈ Fin → ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
14 hasheni 13944 . . . . . . 7 ((1...𝑛) ≈ 𝐴 → (♯‘(1...𝑛)) = (♯‘𝐴))
1514eqcomd 2745 . . . . . 6 ((1...𝑛) ≈ 𝐴 → (♯‘𝐴) = (♯‘(1...𝑛)))
16 hashfz1 13942 . . . . . 6 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
17 ovex 7267 . . . . . . 7 (1...(♯‘𝐴)) ∈ V
18 eqtr 2762 . . . . . . 7 (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (♯‘𝐴) = 𝑛)
19 oveq2 7242 . . . . . . . 8 ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) = (1...𝑛))
20 eqeng 8687 . . . . . . . 8 ((1...(♯‘𝐴)) ∈ V → ((1...(♯‘𝐴)) = (1...𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛)))
2119, 20syl5 34 . . . . . . 7 ((1...(♯‘𝐴)) ∈ V → ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) ≈ (1...𝑛)))
2217, 18, 21mpsyl 68 . . . . . 6 (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛))
2315, 16, 22syl2anr 600 . . . . 5 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ (1...𝑛))
24 entr 8705 . . . . 5 (((1...(♯‘𝐴)) ≈ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴)
2523, 24sylancom 591 . . . 4 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴)
2625, 3sylibr 237 . . 3 ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → 𝐴 ∈ Fin)
2726rexlimiva 3209 . 2 (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴𝐴 ∈ Fin)
2813, 27impbii 212 1 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wrex 3064  Vcvv 3422   class class class wbr 5069  cfv 6400  (class class class)co 7234  cen 8646  Fincfn 8649  1c1 10757  0cn0 12117  ...cfz 13122  chash 13926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-card 9582  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-nn 11858  df-n0 12118  df-z 12204  df-uz 12466  df-fz 13123  df-hash 13927
This theorem is referenced by:  rp-isfinite6  40845
  Copyright terms: Public domain W3C validator