| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-isfinite5 | Structured version Visualization version GIF version | ||
| Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by RP, 3-Mar-2020.) |
| Ref | Expression |
|---|---|
| rp-isfinite5 | ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl 14263 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 2 | isfinite4 14269 | . . . . . 6 ⊢ (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴) | |
| 3 | 2 | biimpi 216 | . . . . 5 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴) |
| 4 | 1, 3 | jca 511 | . . . 4 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴)) |
| 5 | eleq1 2816 | . . . . 5 ⊢ (𝑛 = (♯‘𝐴) → (𝑛 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)) | |
| 6 | oveq2 7357 | . . . . . 6 ⊢ (𝑛 = (♯‘𝐴) → (1...𝑛) = (1...(♯‘𝐴))) | |
| 7 | 6 | breq1d 5102 | . . . . 5 ⊢ (𝑛 = (♯‘𝐴) → ((1...𝑛) ≈ 𝐴 ↔ (1...(♯‘𝐴)) ≈ 𝐴)) |
| 8 | 5, 7 | anbi12d 632 | . . . 4 ⊢ (𝑛 = (♯‘𝐴) → ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴))) |
| 9 | 1, 4, 8 | spcedv 3553 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) |
| 10 | df-rex 3054 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) | |
| 11 | 9, 10 | sylibr 234 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
| 12 | hasheni 14255 | . . . . . . 7 ⊢ ((1...𝑛) ≈ 𝐴 → (♯‘(1...𝑛)) = (♯‘𝐴)) | |
| 13 | 12 | eqcomd 2735 | . . . . . 6 ⊢ ((1...𝑛) ≈ 𝐴 → (♯‘𝐴) = (♯‘(1...𝑛))) |
| 14 | hashfz1 14253 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛) | |
| 15 | ovex 7382 | . . . . . . 7 ⊢ (1...(♯‘𝐴)) ∈ V | |
| 16 | eqtr 2749 | . . . . . . 7 ⊢ (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (♯‘𝐴) = 𝑛) | |
| 17 | oveq2 7357 | . . . . . . . 8 ⊢ ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) = (1...𝑛)) | |
| 18 | eqeng 8911 | . . . . . . . 8 ⊢ ((1...(♯‘𝐴)) ∈ V → ((1...(♯‘𝐴)) = (1...𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛))) | |
| 19 | 17, 18 | syl5 34 | . . . . . . 7 ⊢ ((1...(♯‘𝐴)) ∈ V → ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) ≈ (1...𝑛))) |
| 20 | 15, 16, 19 | mpsyl 68 | . . . . . 6 ⊢ (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛)) |
| 21 | 13, 14, 20 | syl2anr 597 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ (1...𝑛)) |
| 22 | entr 8931 | . . . . 5 ⊢ (((1...(♯‘𝐴)) ≈ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴) | |
| 23 | 21, 22 | sylancom 588 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴) |
| 24 | 23, 2 | sylibr 234 | . . 3 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → 𝐴 ∈ Fin) |
| 25 | 24 | rexlimiva 3122 | . 2 ⊢ (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 → 𝐴 ∈ Fin) |
| 26 | 11, 25 | impbii 209 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ≈ cen 8869 Fincfn 8872 1c1 11010 ℕ0cn0 12384 ...cfz 13410 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 |
| This theorem is referenced by: rp-isfinite6 43491 |
| Copyright terms: Public domain | W3C validator |