Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-isfinite5 | Structured version Visualization version GIF version |
Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by RP, 3-Mar-2020.) |
Ref | Expression |
---|---|
rp-isfinite5 | ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . . 4 ⊢ (♯‘𝐴) ∈ V | |
2 | hashcl 13999 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
3 | isfinite4 14005 | . . . . . 6 ⊢ (𝐴 ∈ Fin ↔ (1...(♯‘𝐴)) ≈ 𝐴) | |
4 | 3 | biimpi 215 | . . . . 5 ⊢ (𝐴 ∈ Fin → (1...(♯‘𝐴)) ≈ 𝐴) |
5 | 2, 4 | jca 511 | . . . 4 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴)) |
6 | eleq1 2826 | . . . . . 6 ⊢ (𝑛 = (♯‘𝐴) → (𝑛 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)) | |
7 | oveq2 7263 | . . . . . . 7 ⊢ (𝑛 = (♯‘𝐴) → (1...𝑛) = (1...(♯‘𝐴))) | |
8 | 7 | breq1d 5080 | . . . . . 6 ⊢ (𝑛 = (♯‘𝐴) → ((1...𝑛) ≈ 𝐴 ↔ (1...(♯‘𝐴)) ≈ 𝐴)) |
9 | 6, 8 | anbi12d 630 | . . . . 5 ⊢ (𝑛 = (♯‘𝐴) → ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴))) |
10 | 9 | spcegv 3526 | . . . 4 ⊢ ((♯‘𝐴) ∈ V → (((♯‘𝐴) ∈ ℕ0 ∧ (1...(♯‘𝐴)) ≈ 𝐴) → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))) |
11 | 1, 5, 10 | mpsyl 68 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) |
12 | df-rex 3069 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) | |
13 | 11, 12 | sylibr 233 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
14 | hasheni 13990 | . . . . . . 7 ⊢ ((1...𝑛) ≈ 𝐴 → (♯‘(1...𝑛)) = (♯‘𝐴)) | |
15 | 14 | eqcomd 2744 | . . . . . 6 ⊢ ((1...𝑛) ≈ 𝐴 → (♯‘𝐴) = (♯‘(1...𝑛))) |
16 | hashfz1 13988 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛) | |
17 | ovex 7288 | . . . . . . 7 ⊢ (1...(♯‘𝐴)) ∈ V | |
18 | eqtr 2761 | . . . . . . 7 ⊢ (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (♯‘𝐴) = 𝑛) | |
19 | oveq2 7263 | . . . . . . . 8 ⊢ ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) = (1...𝑛)) | |
20 | eqeng 8729 | . . . . . . . 8 ⊢ ((1...(♯‘𝐴)) ∈ V → ((1...(♯‘𝐴)) = (1...𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛))) | |
21 | 19, 20 | syl5 34 | . . . . . . 7 ⊢ ((1...(♯‘𝐴)) ∈ V → ((♯‘𝐴) = 𝑛 → (1...(♯‘𝐴)) ≈ (1...𝑛))) |
22 | 17, 18, 21 | mpsyl 68 | . . . . . 6 ⊢ (((♯‘𝐴) = (♯‘(1...𝑛)) ∧ (♯‘(1...𝑛)) = 𝑛) → (1...(♯‘𝐴)) ≈ (1...𝑛)) |
23 | 15, 16, 22 | syl2anr 596 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ (1...𝑛)) |
24 | entr 8747 | . . . . 5 ⊢ (((1...(♯‘𝐴)) ≈ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴) | |
25 | 23, 24 | sylancom 587 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(♯‘𝐴)) ≈ 𝐴) |
26 | 25, 3 | sylibr 233 | . . 3 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → 𝐴 ∈ Fin) |
27 | 26 | rexlimiva 3209 | . 2 ⊢ (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 → 𝐴 ∈ Fin) |
28 | 13, 27 | impbii 208 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ≈ cen 8688 Fincfn 8691 1c1 10803 ℕ0cn0 12163 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: rp-isfinite6 41023 |
Copyright terms: Public domain | W3C validator |