MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspsbca Structured version   Visualization version   GIF version

Theorem rspsbca 3843
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
Assertion
Ref Expression
rspsbca ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspsbca
StepHypRef Expression
1 rspsbc 3842 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
21imp 406 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  [wsbc 3753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-sbc 3754
This theorem is referenced by:  fprodmodd  15963  telgsums  19923  iccelpart  47434
  Copyright terms: Public domain W3C validator