MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspsbca Structured version   Visualization version   GIF version

Theorem rspsbca 3874
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
Assertion
Ref Expression
rspsbca ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspsbca
StepHypRef Expression
1 rspsbc 3873 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
21imp 406 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝜑) → [𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  wral 3060  [wsbc 3777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-sbc 3778
This theorem is referenced by:  fprodmodd  15948  telgsums  19909  iccelpart  46562
  Copyright terms: Public domain W3C validator