MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodmodd Structured version   Visualization version   GIF version

Theorem fprodmodd 15937
Description: If all factors of two finite products are equal modulo 𝑀, the products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
Hypotheses
Ref Expression
fprodmodd.a (𝜑𝐴 ∈ Fin)
fprodmodd.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fprodmodd.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)
fprodmodd.m (𝜑𝑀 ∈ ℕ)
fprodmodd.p ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
Assertion
Ref Expression
fprodmodd (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem fprodmodd
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 15849 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
21oveq1d 7420 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐵 mod 𝑀))
3 prodeq1 15849 . . . 4 (𝑥 = ∅ → ∏𝑘𝑥 𝐶 = ∏𝑘 ∈ ∅ 𝐶)
43oveq1d 7420 . . 3 (𝑥 = ∅ → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))
52, 4eqeq12d 2748 . 2 (𝑥 = ∅ → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)))
6 prodeq1 15849 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐵 = ∏𝑘𝑦 𝐵)
76oveq1d 7420 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐵 mod 𝑀))
8 prodeq1 15849 . . . 4 (𝑥 = 𝑦 → ∏𝑘𝑥 𝐶 = ∏𝑘𝑦 𝐶)
98oveq1d 7420 . . 3 (𝑥 = 𝑦 → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀))
107, 9eqeq12d 2748 . 2 (𝑥 = 𝑦 → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)))
11 prodeq1 15849 . . . 4 (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘𝑥 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵)
1211oveq1d 7420 . . 3 (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀))
13 prodeq1 15849 . . . 4 (𝑥 = (𝑦 ∪ {𝑖}) → ∏𝑘𝑥 𝐶 = ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶)
1413oveq1d 7420 . . 3 (𝑥 = (𝑦 ∪ {𝑖}) → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
1512, 14eqeq12d 2748 . 2 (𝑥 = (𝑦 ∪ {𝑖}) → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)))
16 prodeq1 15849 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐵 = ∏𝑘𝐴 𝐵)
1716oveq1d 7420 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐵 mod 𝑀))
18 prodeq1 15849 . . . 4 (𝑥 = 𝐴 → ∏𝑘𝑥 𝐶 = ∏𝑘𝐴 𝐶)
1918oveq1d 7420 . . 3 (𝑥 = 𝐴 → (∏𝑘𝑥 𝐶 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
2017, 19eqeq12d 2748 . 2 (𝑥 = 𝐴 → ((∏𝑘𝑥 𝐵 mod 𝑀) = (∏𝑘𝑥 𝐶 mod 𝑀) ↔ (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀)))
21 prod0 15883 . . . . 5 𝑘 ∈ ∅ 𝐵 = 1
2221a1i 11 . . . 4 (𝜑 → ∏𝑘 ∈ ∅ 𝐵 = 1)
2322oveq1d 7420 . . 3 (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (1 mod 𝑀))
24 prod0 15883 . . . . 5 𝑘 ∈ ∅ 𝐶 = 1
2524eqcomi 2741 . . . 4 1 = ∏𝑘 ∈ ∅ 𝐶
2625oveq1i 7415 . . 3 (1 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀)
2723, 26eqtrdi 2788 . 2 (𝜑 → (∏𝑘 ∈ ∅ 𝐵 mod 𝑀) = (∏𝑘 ∈ ∅ 𝐶 mod 𝑀))
28 nfv 1917 . . . . . . 7 𝑘(𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦)))
29 nfcsb1v 3917 . . . . . . 7 𝑘𝑖 / 𝑘𝐵
30 ssfi 9169 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑦𝐴) → 𝑦 ∈ Fin)
3130ex 413 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝑦𝐴𝑦 ∈ Fin))
32 fprodmodd.a . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
3331, 32syl11 33 . . . . . . . . 9 (𝑦𝐴 → (𝜑𝑦 ∈ Fin))
3433adantr 481 . . . . . . . 8 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → (𝜑𝑦 ∈ Fin))
3534impcom 408 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
36 simpr 485 . . . . . . . 8 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → 𝑖 ∈ (𝐴𝑦))
3736adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 ∈ (𝐴𝑦))
38 eldifn 4126 . . . . . . . . 9 (𝑖 ∈ (𝐴𝑦) → ¬ 𝑖𝑦)
3938adantl 482 . . . . . . . 8 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → ¬ 𝑖𝑦)
4039adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ¬ 𝑖𝑦)
41 simpll 765 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
42 ssel 3974 . . . . . . . . . . . 12 (𝑦𝐴 → (𝑘𝑦𝑘𝐴))
4342adantr 481 . . . . . . . . . . 11 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → (𝑘𝑦𝑘𝐴))
4443adantl 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (𝑘𝑦𝑘𝐴))
4544imp 407 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
46 fprodmodd.b . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
4741, 45, 46syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℤ)
4847zcnd 12663 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
49 csbeq1a 3906 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
50 eldifi 4125 . . . . . . . . . 10 (𝑖 ∈ (𝐴𝑦) → 𝑖𝐴)
5150adantl 482 . . . . . . . . 9 ((𝑦𝐴𝑖 ∈ (𝐴𝑦)) → 𝑖𝐴)
5246ralrimiva 3146 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
53 rspcsbela 4434 . . . . . . . . 9 ((𝑖𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑖 / 𝑘𝐵 ∈ ℤ)
5451, 52, 53syl2anr 597 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℤ)
5554zcnd 12663 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐵 ∈ ℂ)
5628, 29, 35, 37, 40, 48, 49, 55fprodsplitsn 15929 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 = (∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵))
5756oveq1d 7420 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀))
5857adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀))
5935, 47fprodzcl 15894 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐵 ∈ ℤ)
6059adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ∏𝑘𝑦 𝐵 ∈ ℤ)
61 fprodmodd.c . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℤ)
6241, 45, 61syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℤ)
6335, 62fprodzcl 15894 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘𝑦 𝐶 ∈ ℤ)
6463adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ∏𝑘𝑦 𝐶 ∈ ℤ)
6554adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑖 / 𝑘𝐵 ∈ ℤ)
6661ralrimiva 3146 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℤ)
67 rspcsbela 4434 . . . . . . 7 ((𝑖𝐴 ∧ ∀𝑘𝐴 𝐶 ∈ ℤ) → 𝑖 / 𝑘𝐶 ∈ ℤ)
6851, 66, 67syl2anr 597 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℤ)
6968adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑖 / 𝑘𝐶 ∈ ℤ)
70 fprodmodd.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
7170nnrpd 13010 . . . . . . 7 (𝜑𝑀 ∈ ℝ+)
7271adantr 481 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑀 ∈ ℝ+)
7372adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → 𝑀 ∈ ℝ+)
74 simpr 485 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀))
75 fprodmodd.p . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
7675ralrimiva 3146 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀))
77 rspsbca 3873 . . . . . . . . 9 ((𝑖𝐴 ∧ ∀𝑘𝐴 (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀))
7851, 76, 77syl2anr 597 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → [𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀))
79 vex 3478 . . . . . . . . 9 𝑖 ∈ V
80 sbceqg 4408 . . . . . . . . 9 (𝑖 ∈ V → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀)))
8179, 80mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ([𝑖 / 𝑘](𝐵 mod 𝑀) = (𝐶 mod 𝑀) ↔ 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀)))
8278, 81mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘(𝐵 mod 𝑀) = 𝑖 / 𝑘(𝐶 mod 𝑀))
83 csbov1g 7450 . . . . . . . 8 (𝑖 ∈ V → 𝑖 / 𝑘(𝐵 mod 𝑀) = (𝑖 / 𝑘𝐵 mod 𝑀))
8483elv 3480 . . . . . . 7 𝑖 / 𝑘(𝐵 mod 𝑀) = (𝑖 / 𝑘𝐵 mod 𝑀)
85 csbov1g 7450 . . . . . . . 8 (𝑖 ∈ V → 𝑖 / 𝑘(𝐶 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8685elv 3480 . . . . . . 7 𝑖 / 𝑘(𝐶 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀)
8782, 84, 863eqtr3g 2795 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (𝑖 / 𝑘𝐵 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8887adantr 481 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (𝑖 / 𝑘𝐵 mod 𝑀) = (𝑖 / 𝑘𝐶 mod 𝑀))
8960, 64, 65, 69, 73, 74, 88modmul12d 13886 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ((∏𝑘𝑦 𝐵 · 𝑖 / 𝑘𝐵) mod 𝑀) = ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀))
90 nfcsb1v 3917 . . . . . . . 8 𝑘𝑖 / 𝑘𝐶
9162zcnd 12663 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐶 ∈ ℂ)
92 csbeq1a 3906 . . . . . . . 8 (𝑘 = 𝑖𝐶 = 𝑖 / 𝑘𝐶)
9368zcnd 12663 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → 𝑖 / 𝑘𝐶 ∈ ℂ)
9428, 90, 35, 37, 40, 91, 92, 93fprodsplitsn 15929 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 = (∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶))
9594oveq1d 7420 . . . . . 6 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀) = ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀))
9695eqcomd 2738 . . . . 5 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9796adantr 481 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → ((∏𝑘𝑦 𝐶 · 𝑖 / 𝑘𝐶) mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9858, 89, 973eqtrd 2776 . . 3 (((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) ∧ (∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀)) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀))
9998ex 413 . 2 ((𝜑 ∧ (𝑦𝐴𝑖 ∈ (𝐴𝑦))) → ((∏𝑘𝑦 𝐵 mod 𝑀) = (∏𝑘𝑦 𝐶 mod 𝑀) → (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐵 mod 𝑀) = (∏𝑘 ∈ (𝑦 ∪ {𝑖})𝐶 mod 𝑀)))
1005, 10, 15, 20, 27, 99, 32findcard2d 9162 1 (𝜑 → (∏𝑘𝐴 𝐵 mod 𝑀) = (∏𝑘𝐴 𝐶 mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  [wsbc 3776  csb 3892  cdif 3944  cun 3945  wss 3947  c0 4321  {csn 4627  (class class class)co 7405  Fincfn 8935  1c1 11107   · cmul 11111  cn 12208  cz 12554  +crp 12970   mod cmo 13830  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-prod 15846
This theorem is referenced by:  gausslemma2dlem5a  26862
  Copyright terms: Public domain W3C validator