Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspesbca | Structured version Visualization version GIF version |
Description: Existence form of rspsbca 3824. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
rspesbca | ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3730 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | rspcev 3570 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) |
3 | cbvrexsvw 3297 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 [wsb 2066 ∈ wcel 2105 ∃wrex 3070 [wsbc 3727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-sbc 3728 |
This theorem is referenced by: spesbc 3826 2nreu 4388 rexopabb 5472 indexfi 9225 indexdom 36005 |
Copyright terms: Public domain | W3C validator |