MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspesbca Structured version   Visualization version   GIF version

Theorem rspesbca 3828
Description: Existence form of rspsbca 3827. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspesbca ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspesbca
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3740 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
21rspcev 3573 . 2 ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑦𝐵 [𝑦 / 𝑥]𝜑)
3 cbvrexsvw 3285 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑦 / 𝑥]𝜑)
42, 3sylibr 234 1 ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  [wsb 2067  wcel 2113  wrex 3057  [wsbc 3737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-sbc 3738
This theorem is referenced by:  spesbc  3829  2nreu  4393  rexopabb  5473  indexfi  9253  indexdom  37797
  Copyright terms: Public domain W3C validator