MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspesbca Structured version   Visualization version   GIF version

Theorem rspesbca 3818
Description: Existence form of rspsbca 3817. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspesbca ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspesbca
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3722 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
21rspcev 3560 . 2 ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑦𝐵 [𝑦 / 𝑥]𝜑)
3 cbvrexsvw 3400 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑦 / 𝑥]𝜑)
42, 3sylibr 233 1 ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  [wsb 2070  wcel 2109  wrex 3066  [wsbc 3719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-sbc 3720
This theorem is referenced by:  spesbc  3819  2nreu  4380  rexopabb  5442  indexfi  9088  indexdom  35871
  Copyright terms: Public domain W3C validator