MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspesbca Structured version   Visualization version   GIF version

Theorem rspesbca 3819
Description: Existence form of rspsbca 3818. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspesbca ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspesbca
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3724 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
21rspcev 3566 . 2 ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑦𝐵 [𝑦 / 𝑥]𝜑)
3 cbvrexsvw 3298 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑦 / 𝑥]𝜑)
42, 3sylibr 233 1 ((𝐴𝐵[𝐴 / 𝑥]𝜑) → ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  [wsb 2065  wcel 2104  wrex 3071  [wsbc 3721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-sbc 3722
This theorem is referenced by:  spesbc  3820  2nreu  4381  rexopabb  5454  indexfi  9175  indexdom  35940
  Copyright terms: Public domain W3C validator