Proof of Theorem telgsums
Step | Hyp | Ref
| Expression |
1 | | telgsums.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
2 | | telgsums.0 |
. . 3
⊢ 0 =
(0g‘𝐺) |
3 | | telgsums.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Abel) |
4 | | ablcmn 19308 |
. . . 4
⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ CMnd) |
6 | | ablgrp 19306 |
. . . . . . 7
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
7 | 3, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Grp) |
8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐺 ∈ Grp) |
9 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
10 | | telgsums.f |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) |
11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
∀𝑘 ∈
ℕ0 𝐶
∈ 𝐵) |
12 | | rspcsbela 4366 |
. . . . . 6
⊢ ((𝑖 ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 𝐶
∈ 𝐵) →
⦋𝑖 / 𝑘⦌𝐶 ∈ 𝐵) |
13 | 9, 11, 12 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
⦋𝑖 / 𝑘⦌𝐶 ∈ 𝐵) |
14 | | peano2nn0 12203 |
. . . . . 6
⊢ (𝑖 ∈ ℕ0
→ (𝑖 + 1) ∈
ℕ0) |
15 | | rspcsbela 4366 |
. . . . . 6
⊢ (((𝑖 + 1) ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 𝐶
∈ 𝐵) →
⦋(𝑖 + 1) /
𝑘⦌𝐶 ∈ 𝐵) |
16 | 14, 10, 15 | syl2anr 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
⦋(𝑖 + 1) /
𝑘⦌𝐶 ∈ 𝐵) |
17 | | telgsums.m |
. . . . . 6
⊢ − =
(-g‘𝐺) |
18 | 1, 17 | grpsubcl 18570 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧
⦋𝑖 / 𝑘⦌𝐶 ∈ 𝐵 ∧ ⦋(𝑖 + 1) / 𝑘⦌𝐶 ∈ 𝐵) → (⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶) ∈ 𝐵) |
19 | 8, 13, 16, 18 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶) ∈ 𝐵) |
20 | 19 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ ℕ0
(⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶) ∈ 𝐵) |
21 | | telgsums.s |
. . 3
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
22 | | telgsums.u |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → 𝐶 = 0 )) |
23 | | rspsbca 3809 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 (𝑆 <
𝑘 → 𝐶 = 0 )) → [𝑖 / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 )) |
24 | | sbcimg 3762 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ([𝑖 / 𝑘]𝑆 < 𝑘 → [𝑖 / 𝑘]𝐶 = 0 ))) |
25 | | sbcbr2g 5128 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘 ↔ 𝑆 < ⦋𝑖 / 𝑘⦌𝑘)) |
26 | | csbvarg 4362 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ V →
⦋𝑖 / 𝑘⦌𝑘 = 𝑖) |
27 | 26 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ V → (𝑆 < ⦋𝑖 / 𝑘⦌𝑘 ↔ 𝑆 < 𝑖)) |
28 | 25, 27 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘 ↔ 𝑆 < 𝑖)) |
29 | | sbceq1g 4345 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ V → ([𝑖 / 𝑘]𝐶 = 0 ↔
⦋𝑖 / 𝑘⦌𝐶 = 0 )) |
30 | 28, 29 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ V → (([𝑖 / 𝑘]𝑆 < 𝑘 → [𝑖 / 𝑘]𝐶 = 0 ) ↔ (𝑆 < 𝑖 → ⦋𝑖 / 𝑘⦌𝐶 = 0 ))) |
31 | 24, 30 | bitrd 278 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < 𝑖 → ⦋𝑖 / 𝑘⦌𝐶 = 0 ))) |
32 | 31 | elv 3428 |
. . . . . . . . . . 11
⊢
([𝑖 / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < 𝑖 → ⦋𝑖 / 𝑘⦌𝐶 = 0 )) |
33 | 23, 32 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 (𝑆 <
𝑘 → 𝐶 = 0 )) → (𝑆 < 𝑖 → ⦋𝑖 / 𝑘⦌𝐶 = 0 )) |
34 | 33 | expcom 413 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
ℕ0 (𝑆 <
𝑘 → 𝐶 = 0 ) → (𝑖 ∈ ℕ0
→ (𝑆 < 𝑖 → ⦋𝑖 / 𝑘⦌𝐶 = 0 ))) |
35 | 22, 34 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖 → ⦋𝑖 / 𝑘⦌𝐶 = 0 ))) |
36 | 35 | imp31 417 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → ⦋𝑖 / 𝑘⦌𝐶 = 0 ) |
37 | 21 | nn0red 12224 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ ℝ) |
38 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑆 ∈
ℝ) |
39 | 38 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 ∈ ℝ) |
40 | | nn0re 12172 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℝ) |
41 | 40 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 ∈ ℝ) |
42 | 14 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈
ℕ0) |
43 | 42 | nn0red 12224 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℝ) |
44 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < 𝑖) |
45 | 41 | ltp1d 11835 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 < (𝑖 + 1)) |
46 | 39, 41, 43, 44, 45 | lttrd 11066 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < (𝑖 + 1)) |
47 | 46 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑆 < 𝑖 → 𝑆 < (𝑖 + 1))) |
48 | | rspsbca 3809 |
. . . . . . . . . . 11
⊢ (((𝑖 + 1) ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 (𝑆 <
𝑘 → 𝐶 = 0 )) → [(𝑖 + 1) / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 )) |
49 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ (𝑖 + 1) ∈ V |
50 | | sbcimg 3762 |
. . . . . . . . . . . . 13
⊢ ((𝑖 + 1) ∈ V →
([(𝑖 + 1) / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘 → [(𝑖 + 1) / 𝑘]𝐶 = 0 ))) |
51 | | sbcbr2g 5128 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 + 1) ∈ V →
([(𝑖 + 1) / 𝑘]𝑆 < 𝑘 ↔ 𝑆 < ⦋(𝑖 + 1) / 𝑘⦌𝑘)) |
52 | | csbvarg 4362 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 + 1) ∈ V →
⦋(𝑖 + 1) /
𝑘⦌𝑘 = (𝑖 + 1)) |
53 | 52 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 + 1) ∈ V → (𝑆 < ⦋(𝑖 + 1) / 𝑘⦌𝑘 ↔ 𝑆 < (𝑖 + 1))) |
54 | 51, 53 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 + 1) ∈ V →
([(𝑖 + 1) / 𝑘]𝑆 < 𝑘 ↔ 𝑆 < (𝑖 + 1))) |
55 | | sbceq1g 4345 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 + 1) ∈ V →
([(𝑖 + 1) / 𝑘]𝐶 = 0 ↔
⦋(𝑖 + 1) /
𝑘⦌𝐶 = 0 )) |
56 | 54, 55 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ ((𝑖 + 1) ∈ V →
(([(𝑖 + 1) / 𝑘]𝑆 < 𝑘 → [(𝑖 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → ⦋(𝑖 + 1) / 𝑘⦌𝐶 = 0 ))) |
57 | 50, 56 | bitrd 278 |
. . . . . . . . . . . 12
⊢ ((𝑖 + 1) ∈ V →
([(𝑖 + 1) / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → ⦋(𝑖 + 1) / 𝑘⦌𝐶 = 0 ))) |
58 | 49, 57 | ax-mp 5 |
. . . . . . . . . . 11
⊢
([(𝑖 + 1) /
𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → ⦋(𝑖 + 1) / 𝑘⦌𝐶 = 0 )) |
59 | 48, 58 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝑖 + 1) ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 (𝑆 <
𝑘 → 𝐶 = 0 )) → (𝑆 < (𝑖 + 1) → ⦋(𝑖 + 1) / 𝑘⦌𝐶 = 0 )) |
60 | 14, 22, 59 | syl2anr 596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑆 < (𝑖 + 1) → ⦋(𝑖 + 1) / 𝑘⦌𝐶 = 0 )) |
61 | 47, 60 | syld 47 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑆 < 𝑖 → ⦋(𝑖 + 1) / 𝑘⦌𝐶 = 0 )) |
62 | 61 | imp 406 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → ⦋(𝑖 + 1) / 𝑘⦌𝐶 = 0 ) |
63 | 36, 62 | oveq12d 7273 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶) = ( 0 − 0 )) |
64 | 8 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝐺 ∈ Grp) |
65 | 1, 2 | grpidcl 18522 |
. . . . . . 7
⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
66 | 1, 2, 17 | grpsubid 18574 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 − 0 ) = 0 ) |
67 | 64, 65, 66 | syl2anc2 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → ( 0 − 0 ) = 0 ) |
68 | 63, 67 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶) = 0 ) |
69 | 68 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑆 < 𝑖 → (⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶) = 0 )) |
70 | 69 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ ℕ0 (𝑆 < 𝑖 → (⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶) = 0 )) |
71 | 1, 2, 5, 20, 21, 70 | gsummptnn0fz 19502 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0
↦ (⦋𝑖 /
𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶)))) |
72 | | fzssuz 13226 |
. . . . . 6
⊢
(0...(𝑆 + 1))
⊆ (ℤ≥‘0) |
73 | 72 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...(𝑆 + 1)) ⊆
(ℤ≥‘0)) |
74 | | nn0uz 12549 |
. . . . 5
⊢
ℕ0 = (ℤ≥‘0) |
75 | 73, 74 | sseqtrrdi 3968 |
. . . 4
⊢ (𝜑 → (0...(𝑆 + 1)) ⊆
ℕ0) |
76 | | ssralv 3983 |
. . . 4
⊢
((0...(𝑆 + 1))
⊆ ℕ0 → (∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶 ∈ 𝐵)) |
77 | 75, 10, 76 | sylc 65 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶 ∈ 𝐵) |
78 | 1, 3, 17, 21, 77 | telgsumfz0s 19507 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (⦋𝑖 / 𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶))) = (⦋0 / 𝑘⦌𝐶 −
⦋(𝑆 + 1) /
𝑘⦌𝐶)) |
79 | | peano2nn0 12203 |
. . . . . 6
⊢ (𝑆 ∈ ℕ0
→ (𝑆 + 1) ∈
ℕ0) |
80 | 21, 79 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑆 + 1) ∈
ℕ0) |
81 | 37 | ltp1d 11835 |
. . . . 5
⊢ (𝜑 → 𝑆 < (𝑆 + 1)) |
82 | | rspsbca 3809 |
. . . . . . 7
⊢ (((𝑆 + 1) ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 (𝑆 <
𝑘 → 𝐶 = 0 )) → [(𝑆 + 1) / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 )) |
83 | | ovex 7288 |
. . . . . . . 8
⊢ (𝑆 + 1) ∈ V |
84 | | sbcimg 3762 |
. . . . . . . . 9
⊢ ((𝑆 + 1) ∈ V →
([(𝑆 + 1) / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘 → [(𝑆 + 1) / 𝑘]𝐶 = 0 ))) |
85 | | sbcbr2g 5128 |
. . . . . . . . . . 11
⊢ ((𝑆 + 1) ∈ V →
([(𝑆 + 1) / 𝑘]𝑆 < 𝑘 ↔ 𝑆 < ⦋(𝑆 + 1) / 𝑘⦌𝑘)) |
86 | | csbvarg 4362 |
. . . . . . . . . . . 12
⊢ ((𝑆 + 1) ∈ V →
⦋(𝑆 + 1) /
𝑘⦌𝑘 = (𝑆 + 1)) |
87 | 86 | breq2d 5082 |
. . . . . . . . . . 11
⊢ ((𝑆 + 1) ∈ V → (𝑆 < ⦋(𝑆 + 1) / 𝑘⦌𝑘 ↔ 𝑆 < (𝑆 + 1))) |
88 | 85, 87 | bitrd 278 |
. . . . . . . . . 10
⊢ ((𝑆 + 1) ∈ V →
([(𝑆 + 1) / 𝑘]𝑆 < 𝑘 ↔ 𝑆 < (𝑆 + 1))) |
89 | | sbceq1g 4345 |
. . . . . . . . . 10
⊢ ((𝑆 + 1) ∈ V →
([(𝑆 + 1) / 𝑘]𝐶 = 0 ↔
⦋(𝑆 + 1) /
𝑘⦌𝐶 = 0 )) |
90 | 88, 89 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑆 + 1) ∈ V →
(([(𝑆 + 1) / 𝑘]𝑆 < 𝑘 → [(𝑆 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → ⦋(𝑆 + 1) / 𝑘⦌𝐶 = 0 ))) |
91 | 84, 90 | bitrd 278 |
. . . . . . . 8
⊢ ((𝑆 + 1) ∈ V →
([(𝑆 + 1) / 𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → ⦋(𝑆 + 1) / 𝑘⦌𝐶 = 0 ))) |
92 | 83, 91 | ax-mp 5 |
. . . . . . 7
⊢
([(𝑆 + 1) /
𝑘](𝑆 < 𝑘 → 𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → ⦋(𝑆 + 1) / 𝑘⦌𝐶 = 0 )) |
93 | 82, 92 | sylib 217 |
. . . . . 6
⊢ (((𝑆 + 1) ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 (𝑆 <
𝑘 → 𝐶 = 0 )) → (𝑆 < (𝑆 + 1) → ⦋(𝑆 + 1) / 𝑘⦌𝐶 = 0 )) |
94 | 93 | ex 412 |
. . . . 5
⊢ ((𝑆 + 1) ∈ ℕ0
→ (∀𝑘 ∈
ℕ0 (𝑆 <
𝑘 → 𝐶 = 0 ) → (𝑆 < (𝑆 + 1) → ⦋(𝑆 + 1) / 𝑘⦌𝐶 = 0 ))) |
95 | 80, 22, 81, 94 | syl3c 66 |
. . . 4
⊢ (𝜑 → ⦋(𝑆 + 1) / 𝑘⦌𝐶 = 0 ) |
96 | 95 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (⦋0 / 𝑘⦌𝐶 −
⦋(𝑆 + 1) /
𝑘⦌𝐶) = (⦋0 / 𝑘⦌𝐶 − 0 )) |
97 | | 0nn0 12178 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
98 | 97 | a1i 11 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℕ0) |
99 | | rspcsbela 4366 |
. . . . 5
⊢ ((0
∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶 ∈ 𝐵) → ⦋0 / 𝑘⦌𝐶 ∈ 𝐵) |
100 | 98, 10, 99 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ⦋0 / 𝑘⦌𝐶 ∈ 𝐵) |
101 | 1, 2, 17 | grpsubid1 18575 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧
⦋0 / 𝑘⦌𝐶 ∈ 𝐵) → (⦋0 / 𝑘⦌𝐶 − 0 ) = ⦋0 /
𝑘⦌𝐶) |
102 | 7, 100, 101 | syl2anc 583 |
. . 3
⊢ (𝜑 → (⦋0 / 𝑘⦌𝐶 − 0 ) = ⦋0 /
𝑘⦌𝐶) |
103 | 96, 102 | eqtrd 2778 |
. 2
⊢ (𝜑 → (⦋0 / 𝑘⦌𝐶 −
⦋(𝑆 + 1) /
𝑘⦌𝐶) = ⦋0 / 𝑘⦌𝐶) |
104 | 71, 78, 103 | 3eqtrd 2782 |
1
⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0
↦ (⦋𝑖 /
𝑘⦌𝐶 −
⦋(𝑖 + 1) /
𝑘⦌𝐶))) = ⦋0 / 𝑘⦌𝐶) |