MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsums Structured version   Visualization version   GIF version

Theorem telgsums 19378
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
telgsums.b 𝐵 = (Base‘𝐺)
telgsums.g (𝜑𝐺 ∈ Abel)
telgsums.m = (-g𝐺)
telgsums.0 0 = (0g𝐺)
telgsums.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
telgsums.s (𝜑𝑆 ∈ ℕ0)
telgsums.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
Assertion
Ref Expression
telgsums (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑆,𝑖,𝑘   0 ,𝑖,𝑘   𝜑,𝑖   ,𝑖
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsums
StepHypRef Expression
1 telgsums.b . . 3 𝐵 = (Base‘𝐺)
2 telgsums.0 . . 3 0 = (0g𝐺)
3 telgsums.g . . . 4 (𝜑𝐺 ∈ Abel)
4 ablcmn 19177 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
53, 4syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
6 ablgrp 19175 . . . . . . 7 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
73, 6syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
87adantr 484 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐺 ∈ Grp)
9 simpr 488 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
10 telgsums.f . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1110adantr 484 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
12 rspcsbela 4350 . . . . . 6 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑖 / 𝑘𝐶𝐵)
139, 11, 12syl2anc 587 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐶𝐵)
14 peano2nn0 12130 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
15 rspcsbela 4350 . . . . . 6 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → (𝑖 + 1) / 𝑘𝐶𝐵)
1614, 10, 15syl2anr 600 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐶𝐵)
17 telgsums.m . . . . . 6 = (-g𝐺)
181, 17grpsubcl 18443 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑖 / 𝑘𝐶𝐵(𝑖 + 1) / 𝑘𝐶𝐵) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
198, 13, 16, 18syl3anc 1373 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
2019ralrimiva 3105 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
21 telgsums.s . . 3 (𝜑𝑆 ∈ ℕ0)
22 telgsums.u . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
23 rspsbca 3792 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
24 sbcimg 3745 . . . . . . . . . . . . 13 (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([𝑖 / 𝑘]𝑆 < 𝑘[𝑖 / 𝑘]𝐶 = 0 )))
25 sbcbr2g 5111 . . . . . . . . . . . . . . 15 (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘𝑆 < 𝑖 / 𝑘𝑘))
26 csbvarg 4346 . . . . . . . . . . . . . . . 16 (𝑖 ∈ V → 𝑖 / 𝑘𝑘 = 𝑖)
2726breq2d 5065 . . . . . . . . . . . . . . 15 (𝑖 ∈ V → (𝑆 < 𝑖 / 𝑘𝑘𝑆 < 𝑖))
2825, 27bitrd 282 . . . . . . . . . . . . . 14 (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘𝑆 < 𝑖))
29 sbceq1g 4329 . . . . . . . . . . . . . 14 (𝑖 ∈ V → ([𝑖 / 𝑘]𝐶 = 0𝑖 / 𝑘𝐶 = 0 ))
3028, 29imbi12d 348 . . . . . . . . . . . . 13 (𝑖 ∈ V → (([𝑖 / 𝑘]𝑆 < 𝑘[𝑖 / 𝑘]𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3124, 30bitrd 282 . . . . . . . . . . . 12 (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3231elv 3414 . . . . . . . . . . 11 ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 ))
3323, 32sylib 221 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 ))
3433expcom 417 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3522, 34syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3635imp31 421 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 / 𝑘𝐶 = 0 )
3721nn0red 12151 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
3837adantr 484 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ ℝ)
3938adantr 484 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 ∈ ℝ)
40 nn0re 12099 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
4140ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 ∈ ℝ)
4214ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℕ0)
4342nn0red 12151 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℝ)
44 simpr 488 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < 𝑖)
4541ltp1d 11762 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 < (𝑖 + 1))
4639, 41, 43, 44, 45lttrd 10993 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < (𝑖 + 1))
4746ex 416 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖𝑆 < (𝑖 + 1)))
48 rspsbca 3792 . . . . . . . . . . 11 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
49 ovex 7246 . . . . . . . . . . . 12 (𝑖 + 1) ∈ V
50 sbcimg 3745 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘[(𝑖 + 1) / 𝑘]𝐶 = 0 )))
51 sbcbr2g 5111 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑖 + 1) / 𝑘𝑘))
52 csbvarg 4346 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ V → (𝑖 + 1) / 𝑘𝑘 = (𝑖 + 1))
5352breq2d 5065 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ V → (𝑆 < (𝑖 + 1) / 𝑘𝑘𝑆 < (𝑖 + 1)))
5451, 53bitrd 282 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑖 + 1)))
55 sbceq1g 4329 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝐶 = 0(𝑖 + 1) / 𝑘𝐶 = 0 ))
5654, 55imbi12d 348 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ V → (([(𝑖 + 1) / 𝑘]𝑆 < 𝑘[(𝑖 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 )))
5750, 56bitrd 282 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 )))
5849, 57ax-mp 5 . . . . . . . . . . 11 ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
5948, 58sylib 221 . . . . . . . . . 10 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6014, 22, 59syl2anr 600 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6147, 60syld 47 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖(𝑖 + 1) / 𝑘𝐶 = 0 ))
6261imp 410 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) / 𝑘𝐶 = 0 )
6336, 62oveq12d 7231 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ( 0 0 ))
648adantr 484 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝐺 ∈ Grp)
651, 2grpidcl 18395 . . . . . . 7 (𝐺 ∈ Grp → 0𝐵)
661, 2, 17grpsubid 18447 . . . . . . 7 ((𝐺 ∈ Grp ∧ 0𝐵) → ( 0 0 ) = 0 )
6764, 65, 66syl2anc2 588 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → ( 0 0 ) = 0 )
6863, 67eqtrd 2777 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 )
6968ex 416 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 ))
7069ralrimiva 3105 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑆 < 𝑖 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 ))
711, 2, 5, 20, 21, 70gsummptnn0fz 19371 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
72 fzssuz 13153 . . . . . 6 (0...(𝑆 + 1)) ⊆ (ℤ‘0)
7372a1i 11 . . . . 5 (𝜑 → (0...(𝑆 + 1)) ⊆ (ℤ‘0))
74 nn0uz 12476 . . . . 5 0 = (ℤ‘0)
7573, 74sseqtrrdi 3952 . . . 4 (𝜑 → (0...(𝑆 + 1)) ⊆ ℕ0)
76 ssralv 3967 . . . 4 ((0...(𝑆 + 1)) ⊆ ℕ0 → (∀𝑘 ∈ ℕ0 𝐶𝐵 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵))
7775, 10, 76sylc 65 . . 3 (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵)
781, 3, 17, 21, 77telgsumfz0s 19376 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶))
79 peano2nn0 12130 . . . . . 6 (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0)
8021, 79syl 17 . . . . 5 (𝜑 → (𝑆 + 1) ∈ ℕ0)
8137ltp1d 11762 . . . . 5 (𝜑𝑆 < (𝑆 + 1))
82 rspsbca 3792 . . . . . . 7 (((𝑆 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
83 ovex 7246 . . . . . . . 8 (𝑆 + 1) ∈ V
84 sbcimg 3745 . . . . . . . . 9 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘[(𝑆 + 1) / 𝑘]𝐶 = 0 )))
85 sbcbr2g 5111 . . . . . . . . . . 11 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑆 + 1) / 𝑘𝑘))
86 csbvarg 4346 . . . . . . . . . . . 12 ((𝑆 + 1) ∈ V → (𝑆 + 1) / 𝑘𝑘 = (𝑆 + 1))
8786breq2d 5065 . . . . . . . . . . 11 ((𝑆 + 1) ∈ V → (𝑆 < (𝑆 + 1) / 𝑘𝑘𝑆 < (𝑆 + 1)))
8885, 87bitrd 282 . . . . . . . . . 10 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑆 + 1)))
89 sbceq1g 4329 . . . . . . . . . 10 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝐶 = 0(𝑆 + 1) / 𝑘𝐶 = 0 ))
9088, 89imbi12d 348 . . . . . . . . 9 ((𝑆 + 1) ∈ V → (([(𝑆 + 1) / 𝑘]𝑆 < 𝑘[(𝑆 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9184, 90bitrd 282 . . . . . . . 8 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9283, 91ax-mp 5 . . . . . . 7 ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 ))
9382, 92sylib 221 . . . . . 6 (((𝑆 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 ))
9493ex 416 . . . . 5 ((𝑆 + 1) ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) → (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9580, 22, 81, 94syl3c 66 . . . 4 (𝜑(𝑆 + 1) / 𝑘𝐶 = 0 )
9695oveq2d 7229 . . 3 (𝜑 → (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶) = (0 / 𝑘𝐶 0 ))
97 0nn0 12105 . . . . . 6 0 ∈ ℕ0
9897a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
99 rspcsbela 4350 . . . . 5 ((0 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 0 / 𝑘𝐶𝐵)
10098, 10, 99syl2anc 587 . . . 4 (𝜑0 / 𝑘𝐶𝐵)
1011, 2, 17grpsubid1 18448 . . . 4 ((𝐺 ∈ Grp ∧ 0 / 𝑘𝐶𝐵) → (0 / 𝑘𝐶 0 ) = 0 / 𝑘𝐶)
1027, 100, 101syl2anc 587 . . 3 (𝜑 → (0 / 𝑘𝐶 0 ) = 0 / 𝑘𝐶)
10396, 102eqtrd 2777 . 2 (𝜑 → (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶) = 0 / 𝑘𝐶)
10471, 78, 1033eqtrd 2781 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  [wsbc 3694  csb 3811  wss 3866   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   < clt 10867  0cn0 12090  cuz 12438  ...cfz 13095  Basecbs 16760  0gc0g 16944   Σg cgsu 16945  Grpcgrp 18365  -gcsg 18367  CMndccmn 19170  Abelcabl 19171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-abl 19173
This theorem is referenced by:  telgsum  19379
  Copyright terms: Public domain W3C validator