MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsums Structured version   Visualization version   GIF version

Theorem telgsums 19662
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
telgsums.b 𝐵 = (Base‘𝐺)
telgsums.g (𝜑𝐺 ∈ Abel)
telgsums.m = (-g𝐺)
telgsums.0 0 = (0g𝐺)
telgsums.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
telgsums.s (𝜑𝑆 ∈ ℕ0)
telgsums.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
Assertion
Ref Expression
telgsums (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑆,𝑖,𝑘   0 ,𝑖,𝑘   𝜑,𝑖   ,𝑖
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsums
StepHypRef Expression
1 telgsums.b . . 3 𝐵 = (Base‘𝐺)
2 telgsums.0 . . 3 0 = (0g𝐺)
3 telgsums.g . . . 4 (𝜑𝐺 ∈ Abel)
4 ablcmn 19461 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
53, 4syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
6 ablgrp 19459 . . . . . . 7 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
73, 6syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
87adantr 481 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐺 ∈ Grp)
9 simpr 485 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
10 telgsums.f . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1110adantr 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
12 rspcsbela 4380 . . . . . 6 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑖 / 𝑘𝐶𝐵)
139, 11, 12syl2anc 584 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐶𝐵)
14 peano2nn0 12346 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
15 rspcsbela 4380 . . . . . 6 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → (𝑖 + 1) / 𝑘𝐶𝐵)
1614, 10, 15syl2anr 597 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐶𝐵)
17 telgsums.m . . . . . 6 = (-g𝐺)
181, 17grpsubcl 18724 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑖 / 𝑘𝐶𝐵(𝑖 + 1) / 𝑘𝐶𝐵) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
198, 13, 16, 18syl3anc 1370 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
2019ralrimiva 3140 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
21 telgsums.s . . 3 (𝜑𝑆 ∈ ℕ0)
22 telgsums.u . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
23 rspsbca 3823 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
24 sbcimg 3777 . . . . . . . . . . . . 13 (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([𝑖 / 𝑘]𝑆 < 𝑘[𝑖 / 𝑘]𝐶 = 0 )))
25 sbcbr2g 5145 . . . . . . . . . . . . . . 15 (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘𝑆 < 𝑖 / 𝑘𝑘))
26 csbvarg 4376 . . . . . . . . . . . . . . . 16 (𝑖 ∈ V → 𝑖 / 𝑘𝑘 = 𝑖)
2726breq2d 5099 . . . . . . . . . . . . . . 15 (𝑖 ∈ V → (𝑆 < 𝑖 / 𝑘𝑘𝑆 < 𝑖))
2825, 27bitrd 278 . . . . . . . . . . . . . 14 (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘𝑆 < 𝑖))
29 sbceq1g 4359 . . . . . . . . . . . . . 14 (𝑖 ∈ V → ([𝑖 / 𝑘]𝐶 = 0𝑖 / 𝑘𝐶 = 0 ))
3028, 29imbi12d 344 . . . . . . . . . . . . 13 (𝑖 ∈ V → (([𝑖 / 𝑘]𝑆 < 𝑘[𝑖 / 𝑘]𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3124, 30bitrd 278 . . . . . . . . . . . 12 (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3231elv 3447 . . . . . . . . . . 11 ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 ))
3323, 32sylib 217 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 ))
3433expcom 414 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3522, 34syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3635imp31 418 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 / 𝑘𝐶 = 0 )
3721nn0red 12367 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
3837adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ ℝ)
3938adantr 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 ∈ ℝ)
40 nn0re 12315 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
4140ad2antlr 724 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 ∈ ℝ)
4214ad2antlr 724 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℕ0)
4342nn0red 12367 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℝ)
44 simpr 485 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < 𝑖)
4541ltp1d 11978 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 < (𝑖 + 1))
4639, 41, 43, 44, 45lttrd 11209 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < (𝑖 + 1))
4746ex 413 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖𝑆 < (𝑖 + 1)))
48 rspsbca 3823 . . . . . . . . . . 11 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
49 ovex 7348 . . . . . . . . . . . 12 (𝑖 + 1) ∈ V
50 sbcimg 3777 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘[(𝑖 + 1) / 𝑘]𝐶 = 0 )))
51 sbcbr2g 5145 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑖 + 1) / 𝑘𝑘))
52 csbvarg 4376 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ V → (𝑖 + 1) / 𝑘𝑘 = (𝑖 + 1))
5352breq2d 5099 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ V → (𝑆 < (𝑖 + 1) / 𝑘𝑘𝑆 < (𝑖 + 1)))
5451, 53bitrd 278 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑖 + 1)))
55 sbceq1g 4359 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝐶 = 0(𝑖 + 1) / 𝑘𝐶 = 0 ))
5654, 55imbi12d 344 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ V → (([(𝑖 + 1) / 𝑘]𝑆 < 𝑘[(𝑖 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 )))
5750, 56bitrd 278 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 )))
5849, 57ax-mp 5 . . . . . . . . . . 11 ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
5948, 58sylib 217 . . . . . . . . . 10 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6014, 22, 59syl2anr 597 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6147, 60syld 47 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖(𝑖 + 1) / 𝑘𝐶 = 0 ))
6261imp 407 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) / 𝑘𝐶 = 0 )
6336, 62oveq12d 7333 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ( 0 0 ))
648adantr 481 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝐺 ∈ Grp)
651, 2grpidcl 18676 . . . . . . 7 (𝐺 ∈ Grp → 0𝐵)
661, 2, 17grpsubid 18728 . . . . . . 7 ((𝐺 ∈ Grp ∧ 0𝐵) → ( 0 0 ) = 0 )
6764, 65, 66syl2anc2 585 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → ( 0 0 ) = 0 )
6863, 67eqtrd 2777 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 )
6968ex 413 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 ))
7069ralrimiva 3140 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑆 < 𝑖 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 ))
711, 2, 5, 20, 21, 70gsummptnn0fz 19655 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
72 fzssuz 13370 . . . . . 6 (0...(𝑆 + 1)) ⊆ (ℤ‘0)
7372a1i 11 . . . . 5 (𝜑 → (0...(𝑆 + 1)) ⊆ (ℤ‘0))
74 nn0uz 12693 . . . . 5 0 = (ℤ‘0)
7573, 74sseqtrrdi 3982 . . . 4 (𝜑 → (0...(𝑆 + 1)) ⊆ ℕ0)
76 ssralv 3997 . . . 4 ((0...(𝑆 + 1)) ⊆ ℕ0 → (∀𝑘 ∈ ℕ0 𝐶𝐵 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵))
7775, 10, 76sylc 65 . . 3 (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵)
781, 3, 17, 21, 77telgsumfz0s 19660 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶))
79 peano2nn0 12346 . . . . . 6 (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0)
8021, 79syl 17 . . . . 5 (𝜑 → (𝑆 + 1) ∈ ℕ0)
8137ltp1d 11978 . . . . 5 (𝜑𝑆 < (𝑆 + 1))
82 rspsbca 3823 . . . . . . 7 (((𝑆 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
83 ovex 7348 . . . . . . . 8 (𝑆 + 1) ∈ V
84 sbcimg 3777 . . . . . . . . 9 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘[(𝑆 + 1) / 𝑘]𝐶 = 0 )))
85 sbcbr2g 5145 . . . . . . . . . . 11 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑆 + 1) / 𝑘𝑘))
86 csbvarg 4376 . . . . . . . . . . . 12 ((𝑆 + 1) ∈ V → (𝑆 + 1) / 𝑘𝑘 = (𝑆 + 1))
8786breq2d 5099 . . . . . . . . . . 11 ((𝑆 + 1) ∈ V → (𝑆 < (𝑆 + 1) / 𝑘𝑘𝑆 < (𝑆 + 1)))
8885, 87bitrd 278 . . . . . . . . . 10 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑆 + 1)))
89 sbceq1g 4359 . . . . . . . . . 10 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝐶 = 0(𝑆 + 1) / 𝑘𝐶 = 0 ))
9088, 89imbi12d 344 . . . . . . . . 9 ((𝑆 + 1) ∈ V → (([(𝑆 + 1) / 𝑘]𝑆 < 𝑘[(𝑆 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9184, 90bitrd 278 . . . . . . . 8 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9283, 91ax-mp 5 . . . . . . 7 ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 ))
9382, 92sylib 217 . . . . . 6 (((𝑆 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 ))
9493ex 413 . . . . 5 ((𝑆 + 1) ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) → (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9580, 22, 81, 94syl3c 66 . . . 4 (𝜑(𝑆 + 1) / 𝑘𝐶 = 0 )
9695oveq2d 7331 . . 3 (𝜑 → (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶) = (0 / 𝑘𝐶 0 ))
97 0nn0 12321 . . . . . 6 0 ∈ ℕ0
9897a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
99 rspcsbela 4380 . . . . 5 ((0 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 0 / 𝑘𝐶𝐵)
10098, 10, 99syl2anc 584 . . . 4 (𝜑0 / 𝑘𝐶𝐵)
1011, 2, 17grpsubid1 18729 . . . 4 ((𝐺 ∈ Grp ∧ 0 / 𝑘𝐶𝐵) → (0 / 𝑘𝐶 0 ) = 0 / 𝑘𝐶)
1027, 100, 101syl2anc 584 . . 3 (𝜑 → (0 / 𝑘𝐶 0 ) = 0 / 𝑘𝐶)
10396, 102eqtrd 2777 . 2 (𝜑 → (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶) = 0 / 𝑘𝐶)
10471, 78, 1033eqtrd 2781 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3062  Vcvv 3441  [wsbc 3726  csb 3842  wss 3897   class class class wbr 5087  cmpt 5170  cfv 6465  (class class class)co 7315  cr 10943  0cc0 10944  1c1 10945   + caddc 10947   < clt 11082  0cn0 12306  cuz 12655  ...cfz 13312  Basecbs 16982  0gc0g 17220   Σg cgsu 17221  Grpcgrp 18646  -gcsg 18648  CMndccmn 19454  Abelcabl 19455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-of 7573  df-om 7758  df-1st 7876  df-2nd 7877  df-supp 8025  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-er 8546  df-map 8665  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-fsupp 9199  df-oi 9339  df-card 9768  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-2 12109  df-n0 12307  df-z 12393  df-uz 12656  df-fz 13313  df-fzo 13456  df-seq 13795  df-hash 14118  df-sets 16935  df-slot 16953  df-ndx 16965  df-base 16983  df-ress 17012  df-plusg 17045  df-0g 17222  df-gsum 17223  df-mre 17365  df-mrc 17366  df-acs 17368  df-mgm 18396  df-sgrp 18445  df-mnd 18456  df-submnd 18501  df-grp 18649  df-minusg 18650  df-sbg 18651  df-mulg 18770  df-cntz 18992  df-cmn 19456  df-abl 19457
This theorem is referenced by:  telgsum  19663
  Copyright terms: Public domain W3C validator