MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsums Structured version   Visualization version   GIF version

Theorem telgsums 19979
Description: Telescoping finitely supported group sum ranging over nonnegative integers, using explicit substitution. (Contributed by AV, 24-Oct-2019.)
Hypotheses
Ref Expression
telgsums.b 𝐵 = (Base‘𝐺)
telgsums.g (𝜑𝐺 ∈ Abel)
telgsums.m = (-g𝐺)
telgsums.0 0 = (0g𝐺)
telgsums.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
telgsums.s (𝜑𝑆 ∈ ℕ0)
telgsums.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
Assertion
Ref Expression
telgsums (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
Distinct variable groups:   𝐵,𝑖,𝑘   𝐶,𝑖   𝑖,𝐺   𝑆,𝑖,𝑘   0 ,𝑖,𝑘   𝜑,𝑖   ,𝑖
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)   (𝑘)

Proof of Theorem telgsums
StepHypRef Expression
1 telgsums.b . . 3 𝐵 = (Base‘𝐺)
2 telgsums.0 . . 3 0 = (0g𝐺)
3 telgsums.g . . . 4 (𝜑𝐺 ∈ Abel)
4 ablcmn 19773 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
53, 4syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
6 ablgrp 19771 . . . . . . 7 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
73, 6syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
87adantr 480 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝐺 ∈ Grp)
9 simpr 484 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
10 telgsums.f . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1110adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐶𝐵)
12 rspcsbela 4418 . . . . . 6 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑖 / 𝑘𝐶𝐵)
139, 11, 12syl2anc 584 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → 𝑖 / 𝑘𝐶𝐵)
14 peano2nn0 12546 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 + 1) ∈ ℕ0)
15 rspcsbela 4418 . . . . . 6 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → (𝑖 + 1) / 𝑘𝐶𝐵)
1614, 10, 15syl2anr 597 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝑖 + 1) / 𝑘𝐶𝐵)
17 telgsums.m . . . . . 6 = (-g𝐺)
181, 17grpsubcl 19008 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑖 / 𝑘𝐶𝐵(𝑖 + 1) / 𝑘𝐶𝐵) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
198, 13, 16, 18syl3anc 1373 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
2019ralrimiva 3133 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) ∈ 𝐵)
21 telgsums.s . . 3 (𝜑𝑆 ∈ ℕ0)
22 telgsums.u . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
23 rspsbca 3860 . . . . . . . . . . 11 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
24 sbcimg 3819 . . . . . . . . . . . . 13 (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([𝑖 / 𝑘]𝑆 < 𝑘[𝑖 / 𝑘]𝐶 = 0 )))
25 sbcbr2g 5182 . . . . . . . . . . . . . . 15 (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘𝑆 < 𝑖 / 𝑘𝑘))
26 csbvarg 4414 . . . . . . . . . . . . . . . 16 (𝑖 ∈ V → 𝑖 / 𝑘𝑘 = 𝑖)
2726breq2d 5136 . . . . . . . . . . . . . . 15 (𝑖 ∈ V → (𝑆 < 𝑖 / 𝑘𝑘𝑆 < 𝑖))
2825, 27bitrd 279 . . . . . . . . . . . . . 14 (𝑖 ∈ V → ([𝑖 / 𝑘]𝑆 < 𝑘𝑆 < 𝑖))
29 sbceq1g 4397 . . . . . . . . . . . . . 14 (𝑖 ∈ V → ([𝑖 / 𝑘]𝐶 = 0𝑖 / 𝑘𝐶 = 0 ))
3028, 29imbi12d 344 . . . . . . . . . . . . 13 (𝑖 ∈ V → (([𝑖 / 𝑘]𝑆 < 𝑘[𝑖 / 𝑘]𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3124, 30bitrd 279 . . . . . . . . . . . 12 (𝑖 ∈ V → ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3231elv 3469 . . . . . . . . . . 11 ([𝑖 / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 ))
3323, 32sylib 218 . . . . . . . . . 10 ((𝑖 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 ))
3433expcom 413 . . . . . . . . 9 (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3522, 34syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ ℕ0 → (𝑆 < 𝑖𝑖 / 𝑘𝐶 = 0 )))
3635imp31 417 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 / 𝑘𝐶 = 0 )
3721nn0red 12568 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
3837adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑆 ∈ ℝ)
3938adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 ∈ ℝ)
40 nn0re 12515 . . . . . . . . . . . 12 (𝑖 ∈ ℕ0𝑖 ∈ ℝ)
4140ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 ∈ ℝ)
4214ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℕ0)
4342nn0red 12568 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) ∈ ℝ)
44 simpr 484 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < 𝑖)
4541ltp1d 12177 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑖 < (𝑖 + 1))
4639, 41, 43, 44, 45lttrd 11401 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝑆 < (𝑖 + 1))
4746ex 412 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖𝑆 < (𝑖 + 1)))
48 rspsbca 3860 . . . . . . . . . . 11 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
49 ovex 7443 . . . . . . . . . . . 12 (𝑖 + 1) ∈ V
50 sbcimg 3819 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘[(𝑖 + 1) / 𝑘]𝐶 = 0 )))
51 sbcbr2g 5182 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑖 + 1) / 𝑘𝑘))
52 csbvarg 4414 . . . . . . . . . . . . . . . 16 ((𝑖 + 1) ∈ V → (𝑖 + 1) / 𝑘𝑘 = (𝑖 + 1))
5352breq2d 5136 . . . . . . . . . . . . . . 15 ((𝑖 + 1) ∈ V → (𝑆 < (𝑖 + 1) / 𝑘𝑘𝑆 < (𝑖 + 1)))
5451, 53bitrd 279 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑖 + 1)))
55 sbceq1g 4397 . . . . . . . . . . . . . 14 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘]𝐶 = 0(𝑖 + 1) / 𝑘𝐶 = 0 ))
5654, 55imbi12d 344 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ V → (([(𝑖 + 1) / 𝑘]𝑆 < 𝑘[(𝑖 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 )))
5750, 56bitrd 279 . . . . . . . . . . . 12 ((𝑖 + 1) ∈ V → ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 )))
5849, 57ax-mp 5 . . . . . . . . . . 11 ([(𝑖 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
5948, 58sylib 218 . . . . . . . . . 10 (((𝑖 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6014, 22, 59syl2anr 597 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < (𝑖 + 1) → (𝑖 + 1) / 𝑘𝐶 = 0 ))
6147, 60syld 47 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖(𝑖 + 1) / 𝑘𝐶 = 0 ))
6261imp 406 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 + 1) / 𝑘𝐶 = 0 )
6336, 62oveq12d 7428 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = ( 0 0 ))
648adantr 480 . . . . . . 7 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → 𝐺 ∈ Grp)
651, 2grpidcl 18953 . . . . . . 7 (𝐺 ∈ Grp → 0𝐵)
661, 2, 17grpsubid 19012 . . . . . . 7 ((𝐺 ∈ Grp ∧ 0𝐵) → ( 0 0 ) = 0 )
6764, 65, 66syl2anc2 585 . . . . . 6 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → ( 0 0 ) = 0 )
6863, 67eqtrd 2771 . . . . 5 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑆 < 𝑖) → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 )
6968ex 412 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑆 < 𝑖 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 ))
7069ralrimiva 3133 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑆 < 𝑖 → (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶) = 0 ))
711, 2, 5, 20, 21, 70gsummptnn0fz 19972 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))))
72 fzssuz 13587 . . . . . 6 (0...(𝑆 + 1)) ⊆ (ℤ‘0)
7372a1i 11 . . . . 5 (𝜑 → (0...(𝑆 + 1)) ⊆ (ℤ‘0))
74 nn0uz 12899 . . . . 5 0 = (ℤ‘0)
7573, 74sseqtrrdi 4005 . . . 4 (𝜑 → (0...(𝑆 + 1)) ⊆ ℕ0)
76 ssralv 4032 . . . 4 ((0...(𝑆 + 1)) ⊆ ℕ0 → (∀𝑘 ∈ ℕ0 𝐶𝐵 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵))
7775, 10, 76sylc 65 . . 3 (𝜑 → ∀𝑘 ∈ (0...(𝑆 + 1))𝐶𝐵)
781, 3, 17, 21, 77telgsumfz0s 19977 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (0...𝑆) ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶))
79 peano2nn0 12546 . . . . . 6 (𝑆 ∈ ℕ0 → (𝑆 + 1) ∈ ℕ0)
8021, 79syl 17 . . . . 5 (𝜑 → (𝑆 + 1) ∈ ℕ0)
8137ltp1d 12177 . . . . 5 (𝜑𝑆 < (𝑆 + 1))
82 rspsbca 3860 . . . . . . 7 (((𝑆 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → [(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ))
83 ovex 7443 . . . . . . . 8 (𝑆 + 1) ∈ V
84 sbcimg 3819 . . . . . . . . 9 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘[(𝑆 + 1) / 𝑘]𝐶 = 0 )))
85 sbcbr2g 5182 . . . . . . . . . . 11 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑆 + 1) / 𝑘𝑘))
86 csbvarg 4414 . . . . . . . . . . . 12 ((𝑆 + 1) ∈ V → (𝑆 + 1) / 𝑘𝑘 = (𝑆 + 1))
8786breq2d 5136 . . . . . . . . . . 11 ((𝑆 + 1) ∈ V → (𝑆 < (𝑆 + 1) / 𝑘𝑘𝑆 < (𝑆 + 1)))
8885, 87bitrd 279 . . . . . . . . . 10 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝑆 < 𝑘𝑆 < (𝑆 + 1)))
89 sbceq1g 4397 . . . . . . . . . 10 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘]𝐶 = 0(𝑆 + 1) / 𝑘𝐶 = 0 ))
9088, 89imbi12d 344 . . . . . . . . 9 ((𝑆 + 1) ∈ V → (([(𝑆 + 1) / 𝑘]𝑆 < 𝑘[(𝑆 + 1) / 𝑘]𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9184, 90bitrd 279 . . . . . . . 8 ((𝑆 + 1) ∈ V → ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9283, 91ax-mp 5 . . . . . . 7 ([(𝑆 + 1) / 𝑘](𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 ))
9382, 92sylib 218 . . . . . 6 (((𝑆 + 1) ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 )) → (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 ))
9493ex 412 . . . . 5 ((𝑆 + 1) ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) → (𝑆 < (𝑆 + 1) → (𝑆 + 1) / 𝑘𝐶 = 0 )))
9580, 22, 81, 94syl3c 66 . . . 4 (𝜑(𝑆 + 1) / 𝑘𝐶 = 0 )
9695oveq2d 7426 . . 3 (𝜑 → (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶) = (0 / 𝑘𝐶 0 ))
97 0nn0 12521 . . . . . 6 0 ∈ ℕ0
9897a1i 11 . . . . 5 (𝜑 → 0 ∈ ℕ0)
99 rspcsbela 4418 . . . . 5 ((0 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 0 / 𝑘𝐶𝐵)
10098, 10, 99syl2anc 584 . . . 4 (𝜑0 / 𝑘𝐶𝐵)
1011, 2, 17grpsubid1 19013 . . . 4 ((𝐺 ∈ Grp ∧ 0 / 𝑘𝐶𝐵) → (0 / 𝑘𝐶 0 ) = 0 / 𝑘𝐶)
1027, 100, 101syl2anc 584 . . 3 (𝜑 → (0 / 𝑘𝐶 0 ) = 0 / 𝑘𝐶)
10396, 102eqtrd 2771 . 2 (𝜑 → (0 / 𝑘𝐶 (𝑆 + 1) / 𝑘𝐶) = 0 / 𝑘𝐶)
10471, 78, 1033eqtrd 2775 1 (𝜑 → (𝐺 Σg (𝑖 ∈ ℕ0 ↦ (𝑖 / 𝑘𝐶 (𝑖 + 1) / 𝑘𝐶))) = 0 / 𝑘𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  [wsbc 3770  csb 3879  wss 3931   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  0cn0 12506  cuz 12857  ...cfz 13529  Basecbs 17233  0gc0g 17458   Σg cgsu 17459  Grpcgrp 18921  -gcsg 18923  CMndccmn 19766  Abelcabl 19767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-abl 19769
This theorem is referenced by:  telgsum  19980
  Copyright terms: Public domain W3C validator