Step | Hyp | Ref
| Expression |
1 | | fveq2 6768 |
. . 3
⊢ (𝑥 = 1 → (RePart‘𝑥) =
(RePart‘1)) |
2 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 1 → (𝑝‘𝑥) = (𝑝‘1)) |
3 | 2 | oveq2d 7285 |
. . . . 5
⊢ (𝑥 = 1 → ((𝑝‘0)[,)(𝑝‘𝑥)) = ((𝑝‘0)[,)(𝑝‘1))) |
4 | 3 | eleq2d 2824 |
. . . 4
⊢ (𝑥 = 1 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)))) |
5 | | oveq2 7277 |
. . . . . 6
⊢ (𝑥 = 1 → (0..^𝑥) = (0..^1)) |
6 | | fzo01 13458 |
. . . . . 6
⊢ (0..^1) =
{0} |
7 | 5, 6 | eqtrdi 2794 |
. . . . 5
⊢ (𝑥 = 1 → (0..^𝑥) = {0}) |
8 | 7 | rexeqdv 3348 |
. . . 4
⊢ (𝑥 = 1 → (∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
9 | 4, 8 | imbi12d 345 |
. . 3
⊢ (𝑥 = 1 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)) → ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
10 | 1, 9 | raleqbidv 3335 |
. 2
⊢ (𝑥 = 1 → (∀𝑝 ∈ (RePart‘𝑥)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ∀𝑝 ∈ (RePart‘1)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)) → ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
11 | | fveq2 6768 |
. . 3
⊢ (𝑥 = 𝑦 → (RePart‘𝑥) = (RePart‘𝑦)) |
12 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑝‘𝑥) = (𝑝‘𝑦)) |
13 | 12 | oveq2d 7285 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑝‘0)[,)(𝑝‘𝑥)) = ((𝑝‘0)[,)(𝑝‘𝑦))) |
14 | 13 | eleq2d 2824 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)))) |
15 | | oveq2 7277 |
. . . . 5
⊢ (𝑥 = 𝑦 → (0..^𝑥) = (0..^𝑦)) |
16 | 15 | rexeqdv 3348 |
. . . 4
⊢ (𝑥 = 𝑦 → (∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
17 | 14, 16 | imbi12d 345 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
18 | 11, 17 | raleqbidv 3335 |
. 2
⊢ (𝑥 = 𝑦 → (∀𝑝 ∈ (RePart‘𝑥)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
19 | | fveq2 6768 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (RePart‘𝑥) = (RePart‘(𝑦 + 1))) |
20 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝑝‘𝑥) = (𝑝‘(𝑦 + 1))) |
21 | 20 | oveq2d 7285 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝑝‘0)[,)(𝑝‘𝑥)) = ((𝑝‘0)[,)(𝑝‘(𝑦 + 1)))) |
22 | 21 | eleq2d 2824 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) |
23 | | oveq2 7277 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (0..^𝑥) = (0..^(𝑦 + 1))) |
24 | 23 | rexeqdv 3348 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
25 | 22, 24 | imbi12d 345 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
26 | 19, 25 | raleqbidv 3335 |
. 2
⊢ (𝑥 = (𝑦 + 1) → (∀𝑝 ∈ (RePart‘𝑥)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ∀𝑝 ∈ (RePart‘(𝑦 + 1))(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
27 | | fveq2 6768 |
. . 3
⊢ (𝑥 = 𝑀 → (RePart‘𝑥) = (RePart‘𝑀)) |
28 | | fveq2 6768 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (𝑝‘𝑥) = (𝑝‘𝑀)) |
29 | 28 | oveq2d 7285 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((𝑝‘0)[,)(𝑝‘𝑥)) = ((𝑝‘0)[,)(𝑝‘𝑀))) |
30 | 29 | eleq2d 2824 |
. . . 4
⊢ (𝑥 = 𝑀 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)))) |
31 | | oveq2 7277 |
. . . . 5
⊢ (𝑥 = 𝑀 → (0..^𝑥) = (0..^𝑀)) |
32 | 31 | rexeqdv 3348 |
. . . 4
⊢ (𝑥 = 𝑀 → (∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
33 | 30, 32 | imbi12d 345 |
. . 3
⊢ (𝑥 = 𝑀 → ((𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
34 | 27, 33 | raleqbidv 3335 |
. 2
⊢ (𝑥 = 𝑀 → (∀𝑝 ∈ (RePart‘𝑥)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑥)) → ∃𝑖 ∈ (0..^𝑥)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ∀𝑝 ∈ (RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
35 | | 0nn0 12237 |
. . . . 5
⊢ 0 ∈
ℕ0 |
36 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑖 = 0 → (𝑝‘𝑖) = (𝑝‘0)) |
37 | | fv0p1e1 12085 |
. . . . . . . 8
⊢ (𝑖 = 0 → (𝑝‘(𝑖 + 1)) = (𝑝‘1)) |
38 | 36, 37 | oveq12d 7287 |
. . . . . . 7
⊢ (𝑖 = 0 → ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑝‘0)[,)(𝑝‘1))) |
39 | 38 | eleq2d 2824 |
. . . . . 6
⊢ (𝑖 = 0 → (𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)))) |
40 | 39 | rexsng 4612 |
. . . . 5
⊢ (0 ∈
ℕ0 → (∃𝑖 ∈ {0}𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)))) |
41 | 35, 40 | ax-mp 5 |
. . . 4
⊢
(∃𝑖 ∈
{0}𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1))) |
42 | 41 | biimpri 227 |
. . 3
⊢ (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘1)) → ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) |
43 | 42 | rgenw 3076 |
. 2
⊢
∀𝑝 ∈
(RePart‘1)(𝑋 ∈
((𝑝‘0)[,)(𝑝‘1)) → ∃𝑖 ∈ {0}𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) |
44 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑝 𝑦 ∈ ℕ |
45 | | nfra1 3144 |
. . . . 5
⊢
Ⅎ𝑝∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) |
46 | 44, 45 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑝(𝑦 ∈ ℕ ∧
∀𝑝 ∈
(RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
47 | | nnnn0 12229 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
48 | | fzonn0p1 13453 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈ (0..^(𝑦 + 1))) |
49 | 47, 48 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈ (0..^(𝑦 + 1))) |
50 | 49 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → 𝑦 ∈ (0..^(𝑦 + 1))) |
51 | | fveq2 6768 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑦 → (𝑝‘𝑖) = (𝑝‘𝑦)) |
52 | | fvoveq1 7292 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑦 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑦 + 1))) |
53 | 51, 52 | oveq12d 7287 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑦 → ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑝‘𝑦)[,)(𝑝‘(𝑦 + 1)))) |
54 | 53 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑖 = 𝑦 → (𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘𝑦)[,)(𝑝‘(𝑦 + 1))))) |
55 | 54 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) ∧ 𝑖 = 𝑦) → (𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘𝑦)[,)(𝑝‘(𝑦 + 1))))) |
56 | | peano2nn 11974 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℕ) |
57 | 56 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑦 + 1) ∈
ℕ) |
58 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 𝑝 ∈ (RePart‘(𝑦 + 1))) |
59 | 56 | nnnn0d 12282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℕ0) |
60 | | 0elfz 13342 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 + 1) ∈ ℕ0
→ 0 ∈ (0...(𝑦 +
1))) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ → 0 ∈
(0...(𝑦 +
1))) |
62 | 61 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 0 ∈
(0...(𝑦 +
1))) |
63 | 57, 58, 62 | iccpartxr 44828 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝‘0) ∈
ℝ*) |
64 | | nn0fz0 13343 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 + 1) ∈ ℕ0
↔ (𝑦 + 1) ∈
(0...(𝑦 +
1))) |
65 | 59, 64 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ (0...(𝑦 + 1))) |
66 | 65 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑦 + 1) ∈ (0...(𝑦 + 1))) |
67 | 57, 58, 66 | iccpartxr 44828 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝‘(𝑦 + 1)) ∈
ℝ*) |
68 | 63, 67 | jca 512 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘0) ∈
ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈
ℝ*)) |
69 | 68 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘0) ∈ ℝ* ∧
(𝑝‘(𝑦 + 1)) ∈
ℝ*)) |
70 | | elico1 13111 |
. . . . . . . . . . . 12
⊢ (((𝑝‘0) ∈
ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈ ℝ*) →
(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
71 | 69, 70 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
72 | | simp1 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ ℝ*
∧ (𝑝‘0) ≤
𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))) → 𝑋 ∈
ℝ*) |
73 | 72 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝑝‘𝑦) ≤ 𝑋 ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 ∈
ℝ*) |
74 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ (((𝑝‘𝑦) ≤ 𝑋 ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑝‘𝑦) ≤ 𝑋) |
75 | | simpr3 1195 |
. . . . . . . . . . . . . . 15
⊢ (((𝑝‘𝑦) ≤ 𝑋 ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 < (𝑝‘(𝑦 + 1))) |
76 | 73, 74, 75 | 3jca 1127 |
. . . . . . . . . . . . . 14
⊢ (((𝑝‘𝑦) ≤ 𝑋 ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑋 ∈ ℝ* ∧ (𝑝‘𝑦) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) |
77 | 76 | ex 413 |
. . . . . . . . . . . . 13
⊢ ((𝑝‘𝑦) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))) → (𝑋 ∈ ℝ* ∧ (𝑝‘𝑦) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
78 | 77 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))) → (𝑋 ∈ ℝ* ∧ (𝑝‘𝑦) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
79 | 78 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))) → (𝑋 ∈ ℝ* ∧ (𝑝‘𝑦) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
80 | 71, 79 | sylbid 239 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → (𝑋 ∈ ℝ* ∧ (𝑝‘𝑦) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
81 | 80 | impr 455 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → (𝑋 ∈ ℝ* ∧ (𝑝‘𝑦) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) |
82 | | nn0fz0 13343 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℕ0
↔ 𝑦 ∈ (0...𝑦)) |
83 | 47, 82 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ → 𝑦 ∈ (0...𝑦)) |
84 | | fzelp1 13297 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...𝑦) → 𝑦 ∈ (0...(𝑦 + 1))) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → 𝑦 ∈ (0...(𝑦 + 1))) |
86 | 85 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 𝑦 ∈ (0...(𝑦 + 1))) |
87 | 57, 58, 86 | iccpartxr 44828 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝‘𝑦) ∈
ℝ*) |
88 | 87, 67 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘𝑦) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈
ℝ*)) |
89 | 88 | ad2ant2r 744 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → ((𝑝‘𝑦) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈
ℝ*)) |
90 | | elico1 13111 |
. . . . . . . . . 10
⊢ (((𝑝‘𝑦) ∈ ℝ* ∧ (𝑝‘(𝑦 + 1)) ∈ ℝ*) →
(𝑋 ∈ ((𝑝‘𝑦)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘𝑦) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
91 | 89, 90 | syl 17 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → (𝑋 ∈ ((𝑝‘𝑦)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘𝑦) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
92 | 81, 91 | mpbird 256 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → 𝑋 ∈ ((𝑝‘𝑦)[,)(𝑝‘(𝑦 + 1)))) |
93 | 50, 55, 92 | rspcedvd 3564 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ ∧ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑝 ∈ (RePart‘(𝑦 + 1)) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) |
94 | 93 | exp43 437 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → ((𝑝‘𝑦) ≤ 𝑋 → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
95 | 94 | adantr 481 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧
∀𝑝 ∈
(RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → ((𝑝‘𝑦) ≤ 𝑋 → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
96 | | iccpartres 44827 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦)) |
97 | | rspsbca 3814 |
. . . . . . . . . . . 12
⊢ (((𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦) ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → [(𝑝 ↾ (0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
98 | | vex 3435 |
. . . . . . . . . . . . . . 15
⊢ 𝑝 ∈ V |
99 | 98 | resex 5934 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ↾ (0...𝑦)) ∈ V |
100 | | sbcimg 3768 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → [(𝑝 ↾ (0...𝑦)) / 𝑝]∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
101 | | sbcel2 4351 |
. . . . . . . . . . . . . . . . 17
⊢
([(𝑝 ↾
(0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) ↔ 𝑋 ∈ ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌((𝑝‘0)[,)(𝑝‘𝑦))) |
102 | | csbov12g 7313 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌((𝑝‘0)[,)(𝑝‘𝑦)) = (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘0)[,)⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘𝑦))) |
103 | | csbfv12 6811 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
⦋(𝑝
↾ (0...𝑦)) / 𝑝⦌(𝑝‘0) =
(⦋(𝑝 ↾
(0...𝑦)) / 𝑝⦌𝑝‘⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌0) |
104 | | csbvarg 4367 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑝 = (𝑝 ↾ (0...𝑦))) |
105 | | csbconstg 3852 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌0 = 0) |
106 | 104, 105 | fveq12d 6775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑝‘⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌0) = ((𝑝 ↾ (0...𝑦))‘0)) |
107 | 103, 106 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘0) = ((𝑝 ↾ (0...𝑦))‘0)) |
108 | | csbfv12 6811 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
⦋(𝑝
↾ (0...𝑦)) / 𝑝⦌(𝑝‘𝑦) = (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑝‘⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑦) |
109 | | csbconstg 3852 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑦 = 𝑦) |
110 | 104, 109 | fveq12d 6775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑝‘⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑦) = ((𝑝 ↾ (0...𝑦))‘𝑦)) |
111 | 108, 110 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘𝑦) = ((𝑝 ↾ (0...𝑦))‘𝑦)) |
112 | 107, 111 | oveq12d 7287 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘0)[,)⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘𝑦)) = (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦))) |
113 | 102, 112 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌((𝑝‘0)[,)(𝑝‘𝑦)) = (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦))) |
114 | 113 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑋 ∈ ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌((𝑝‘0)[,)(𝑝‘𝑦)) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)))) |
115 | 101, 114 | syl5bb 283 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)))) |
116 | | sbcrex 3809 |
. . . . . . . . . . . . . . . . 17
⊢
([(𝑝 ↾
(0...𝑦)) / 𝑝]∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)[(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) |
117 | | sbcel2 4351 |
. . . . . . . . . . . . . . . . . . 19
⊢
([(𝑝 ↾
(0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) |
118 | | csbov12g 7313 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) = (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘𝑖)[,)⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘(𝑖 + 1)))) |
119 | | csbfv12 6811 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
⦋(𝑝
↾ (0...𝑦)) / 𝑝⦌(𝑝‘𝑖) = (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑝‘⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑖) |
120 | | csbconstg 3852 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑖 = 𝑖) |
121 | 104, 120 | fveq12d 6775 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑝‘⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑖) = ((𝑝 ↾ (0...𝑦))‘𝑖)) |
122 | 119, 121 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘𝑖) = ((𝑝 ↾ (0...𝑦))‘𝑖)) |
123 | | csbfv12 6811 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
⦋(𝑝
↾ (0...𝑦)) / 𝑝⦌(𝑝‘(𝑖 + 1)) = (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑝‘⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑖 + 1)) |
124 | | csbconstg 3852 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑖 + 1) = (𝑖 + 1)) |
125 | 104, 124 | fveq12d 6775 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌𝑝‘⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑖 + 1)) = ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) |
126 | 123, 125 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘(𝑖 + 1)) = ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) |
127 | 122, 126 | oveq12d 7287 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘𝑖)[,)⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌(𝑝‘(𝑖 + 1))) = (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) |
128 | 118, 127 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) = (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) |
129 | 128 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (𝑋 ∈ ⦋(𝑝 ↾ (0...𝑦)) / 𝑝⦌((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))) |
130 | 117, 129 | syl5bb 283 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))) |
131 | 130 | rexbidv 3225 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (∃𝑖 ∈ (0..^𝑦)[(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))) |
132 | 116, 131 | syl5bb 283 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝]∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))) |
133 | 115, 132 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → (([(𝑝 ↾ (0...𝑦)) / 𝑝]𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → [(𝑝 ↾ (0...𝑦)) / 𝑝]∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))))) |
134 | 100, 133 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ↾ (0...𝑦)) ∈ V → ([(𝑝 ↾ (0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))))) |
135 | 99, 134 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
([(𝑝 ↾
(0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))))) |
136 | 68, 70 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
137 | 136 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))))) |
138 | 72 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 ∈
ℝ*) |
139 | | simpr2 1194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑝‘0) ≤ 𝑋) |
140 | | xrltnle 11031 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑋 ∈ ℝ*
∧ (𝑝‘𝑦) ∈ ℝ*)
→ (𝑋 < (𝑝‘𝑦) ↔ ¬ (𝑝‘𝑦) ≤ 𝑋)) |
141 | 72, 87, 140 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑋 < (𝑝‘𝑦) ↔ ¬ (𝑝‘𝑦) ≤ 𝑋)) |
142 | 141 | exbiri 808 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑋 ∈ ℝ*
∧ (𝑝‘0) ≤
𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → 𝑋 < (𝑝‘𝑦)))) |
143 | 142 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))) → 𝑋 < (𝑝‘𝑦)))) |
144 | 143 | imp31 418 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 < (𝑝‘𝑦)) |
145 | 138, 139,
144 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘𝑦))) |
146 | 63, 87 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘0) ∈
ℝ* ∧ (𝑝‘𝑦) ∈
ℝ*)) |
147 | 146 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → ((𝑝‘0) ∈ ℝ* ∧
(𝑝‘𝑦) ∈
ℝ*)) |
148 | | elico1 13111 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑝‘0) ∈
ℝ* ∧ (𝑝‘𝑦) ∈ ℝ*) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘𝑦)))) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) ↔ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘𝑦)))) |
150 | 145, 149 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) ∧ (𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1)))) → 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) |
151 | 150 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) → ((𝑋 ∈ ℝ* ∧ (𝑝‘0) ≤ 𝑋 ∧ 𝑋 < (𝑝‘(𝑦 + 1))) → 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)))) |
152 | 137, 151 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)))) |
153 | | 0elfz 13342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ0
→ 0 ∈ (0...𝑦)) |
154 | 47, 153 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℕ → 0 ∈
(0...𝑦)) |
155 | 154 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 0 ∈
(0...𝑦)) |
156 | | fvres 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 ∈
(0...𝑦) → ((𝑝 ↾ (0...𝑦))‘0) = (𝑝‘0)) |
157 | 155, 156 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝 ↾ (0...𝑦))‘0) = (𝑝‘0)) |
158 | 157 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝‘0) = ((𝑝 ↾ (0...𝑦))‘0)) |
159 | 83 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → 𝑦 ∈ (0...𝑦)) |
160 | | fvres 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (0...𝑦) → ((𝑝 ↾ (0...𝑦))‘𝑦) = (𝑝‘𝑦)) |
161 | 159, 160 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝 ↾ (0...𝑦))‘𝑦) = (𝑝‘𝑦)) |
162 | 161 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑝‘𝑦) = ((𝑝 ↾ (0...𝑦))‘𝑦)) |
163 | 158, 162 | oveq12d 7287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → ((𝑝‘0)[,)(𝑝‘𝑦)) = (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦))) |
164 | 163 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) ↔ 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)))) |
165 | 164 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) → 𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦))) |
166 | | elfzofz 13392 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝑦) → 𝑖 ∈ (0...𝑦)) |
167 | 166 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → 𝑖 ∈ (0...𝑦)) |
168 | | fvres 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (0...𝑦) → ((𝑝 ↾ (0...𝑦))‘𝑖) = (𝑝‘𝑖)) |
169 | 167, 168 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑝 ↾ (0...𝑦))‘𝑖) = (𝑝‘𝑖)) |
170 | | fzofzp1 13473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (0..^𝑦) → (𝑖 + 1) ∈ (0...𝑦)) |
171 | 170 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑖 + 1) ∈ (0...𝑦)) |
172 | | fvres 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 + 1) ∈ (0...𝑦) → ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)) = (𝑝‘(𝑖 + 1))) |
173 | 171, 172 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)) = (𝑝‘(𝑖 + 1))) |
174 | 173 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → ((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)) = (𝑝‘(𝑖 + 1))) |
175 | 169, 174 | oveq12d 7287 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) = ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) |
176 | 175 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) ∧ 𝑖 ∈ (0..^𝑦)) → (𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) ↔ 𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
177 | 176 | rexbidva 3224 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) → (∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
178 | | nnz 12331 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
179 | | uzid 12586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
(ℤ≥‘𝑦)) |
180 | 178, 179 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
(ℤ≥‘𝑦)) |
181 | | peano2uz 12630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈
(ℤ≥‘𝑦) → (𝑦 + 1) ∈
(ℤ≥‘𝑦)) |
182 | | fzoss2 13404 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 + 1) ∈
(ℤ≥‘𝑦) → (0..^𝑦) ⊆ (0..^(𝑦 + 1))) |
183 | 180, 181,
182 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℕ →
(0..^𝑦) ⊆ (0..^(𝑦 + 1))) |
184 | 183 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) → (0..^𝑦) ⊆ (0..^(𝑦 + 1))) |
185 | | ssrexv 3989 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((0..^𝑦) ⊆
(0..^(𝑦 + 1)) →
(∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
186 | 184, 185 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) → (∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
187 | 177, 186 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) → (∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
188 | 165, 187 | embantd 59 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ 𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦))) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
189 | 188 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
190 | 189 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
191 | 152, 190 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) ∧ ¬ (𝑝‘𝑦) ≤ 𝑋) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
192 | 191 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
193 | 192 | com34 91 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
194 | 193 | com13 88 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘0)[,)((𝑝 ↾ (0...𝑦))‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ (((𝑝 ↾ (0...𝑦))‘𝑖)[,)((𝑝 ↾ (0...𝑦))‘(𝑖 + 1)))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
195 | 135, 194 | sylbi 216 |
. . . . . . . . . . . 12
⊢
([(𝑝 ↾
(0...𝑦)) / 𝑝](𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
196 | 97, 195 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦) ∧ ∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
197 | 196 | ex 413 |
. . . . . . . . . 10
⊢ ((𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦) → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))))) |
198 | 197 | com24 95 |
. . . . . . . . 9
⊢ ((𝑝 ↾ (0...𝑦)) ∈ (RePart‘𝑦) → ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))))) |
199 | 96, 198 | mpcom 38 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝑝 ∈ (RePart‘(𝑦 + 1))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
200 | 199 | ex 413 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (¬ (𝑝‘𝑦) ≤ 𝑋 → (∀𝑝 ∈ (RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))))) |
201 | 200 | com24 95 |
. . . . . 6
⊢ (𝑦 ∈ ℕ →
(∀𝑝 ∈
(RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))))) |
202 | 201 | imp 407 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧
∀𝑝 ∈
(RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → (¬ (𝑝‘𝑦) ≤ 𝑋 → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))))) |
203 | 95, 202 | pm2.61d 179 |
. . . 4
⊢ ((𝑦 ∈ ℕ ∧
∀𝑝 ∈
(RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑝 ∈ (RePart‘(𝑦 + 1)) → (𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
204 | 46, 203 | ralrimi 3141 |
. . 3
⊢ ((𝑦 ∈ ℕ ∧
∀𝑝 ∈
(RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → ∀𝑝 ∈ (RePart‘(𝑦 + 1))(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
205 | 204 | ex 413 |
. 2
⊢ (𝑦 ∈ ℕ →
(∀𝑝 ∈
(RePart‘𝑦)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑦)) → ∃𝑖 ∈ (0..^𝑦)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) → ∀𝑝 ∈ (RePart‘(𝑦 + 1))(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘(𝑦 + 1))) → ∃𝑖 ∈ (0..^(𝑦 + 1))𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))))) |
206 | 10, 18, 26, 34, 43, 205 | nnind 11980 |
1
⊢ (𝑀 ∈ ℕ →
∀𝑝 ∈
(RePart‘𝑀)(𝑋 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑋 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |