| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salunid | Structured version Visualization version GIF version | ||
| Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| salunid.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Ref | Expression |
|---|---|
| salunid | ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salunid.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 2 | saluni 46316 | . 2 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4873 SAlgcsalg 46299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-ss 3933 df-nul 4299 df-pw 4567 df-uni 4874 df-salg 46300 |
| This theorem is referenced by: subsaluni 46351 smfconst 46740 |
| Copyright terms: Public domain | W3C validator |