| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salunid | Structured version Visualization version GIF version | ||
| Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| salunid.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Ref | Expression |
|---|---|
| salunid | ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salunid.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 2 | saluni 46297 | . 2 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∪ cuni 4887 SAlgcsalg 46280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-ss 3948 df-nul 4314 df-pw 4582 df-uni 4888 df-salg 46281 |
| This theorem is referenced by: subsaluni 46332 smfconst 46721 |
| Copyright terms: Public domain | W3C validator |