![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salunid | Structured version Visualization version GIF version |
Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salunid.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Ref | Expression |
---|---|
salunid | ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salunid.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | saluni 41287 | . 2 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ∪ cuni 4628 SAlgcsalg 41271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-in 3776 df-ss 3783 df-nul 4116 df-pw 4351 df-uni 4629 df-salg 41272 |
This theorem is referenced by: subsaluni 41321 smfpimltxr 41702 smfconst 41704 smfpimgtxr 41734 |
Copyright terms: Public domain | W3C validator |