Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salunid Structured version   Visualization version   GIF version

Theorem salunid 45055
Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
salunid.1 (𝜑𝑆 ∈ SAlg)
Assertion
Ref Expression
salunid (𝜑 𝑆𝑆)

Proof of Theorem salunid
StepHypRef Expression
1 salunid.1 . 2 (𝜑𝑆 ∈ SAlg)
2 saluni 45027 . 2 (𝑆 ∈ SAlg → 𝑆𝑆)
31, 2syl 17 1 (𝜑 𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   cuni 4907  SAlgcsalg 45010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322  df-pw 4603  df-uni 4908  df-salg 45011
This theorem is referenced by:  subsaluni  45062  smfconst  45451
  Copyright terms: Public domain W3C validator