Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salunid | Structured version Visualization version GIF version |
Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salunid.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Ref | Expression |
---|---|
salunid | ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salunid.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | saluni 44253 | . 2 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∪ cuni 4860 SAlgcsalg 44237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rab 3406 df-v 3445 df-dif 3908 df-in 3912 df-ss 3922 df-nul 4278 df-pw 4557 df-uni 4861 df-salg 44238 |
This theorem is referenced by: subsaluni 44287 smfconst 44676 |
Copyright terms: Public domain | W3C validator |