![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salunid | Structured version Visualization version GIF version |
Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salunid.1 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Ref | Expression |
---|---|
salunid | ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salunid.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | saluni 46309 | . 2 ⊢ (𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4915 SAlgcsalg 46292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3483 df-dif 3969 df-ss 3983 df-nul 4343 df-pw 4610 df-uni 4916 df-salg 46293 |
This theorem is referenced by: subsaluni 46344 smfconst 46733 |
Copyright terms: Public domain | W3C validator |