| Metamath
Proof Explorer Theorem List (p. 458 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | limsupbnd1f 45701* | If a sequence is eventually at most 𝐴, then the limsup is also at most 𝐴. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝐴)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ≤ 𝐴) | ||
| Theorem | climbddf 45702* | A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) | ||
| Theorem | climeqf 45703* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | ||
| Theorem | climeldmeqmpt3 45704* | Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt 45683 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐶 ↦ 𝐷) ∈ dom ⇝ )) | ||
| Theorem | limsupcld 45705 | Closure of the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ*) | ||
| Theorem | climfv 45706 | The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝐹 ⇝ 𝐴 → 𝐴 = ( ⇝ ‘𝐹)) | ||
| Theorem | limsupval3 45707* | The superior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) | ||
| Theorem | climfveqmpt2 45708* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ( ⇝ ‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = ( ⇝ ‘(𝑘 ∈ 𝐵 ↦ 𝐶))) | ||
| Theorem | limsup0 45709 | The superior limit of the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (lim sup‘∅) = -∞ | ||
| Theorem | climeldmeqmpt2 45710* | Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∈ dom ⇝ ↔ (𝑘 ∈ 𝐵 ↦ 𝐶) ∈ dom ⇝ )) | ||
| Theorem | limsupresre 45711 | The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ ℝ)) = (lim sup‘𝐹)) | ||
| Theorem | climeqmpt 45712* | Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑍 ⊆ 𝐴) & ⊢ (𝜑 → 𝑍 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝ 𝐷 ↔ (𝑥 ∈ 𝐵 ↦ 𝐶) ⇝ 𝐷)) | ||
| Theorem | climfvd 45713 | The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 = ( ⇝ ‘𝐹)) | ||
| Theorem | limsuplesup 45714 | An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐾 ∈ ℝ) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) ≤ sup(((𝐹 “ (𝐾[,)+∞)) ∩ ℝ*), ℝ*, < )) | ||
| Theorem | limsupresico 45715 | The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑍 = (𝑀[,)+∞) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝑍)) = (lim sup‘𝐹)) | ||
| Theorem | limsuppnfdlem 45716* | If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = +∞) | ||
| Theorem | limsuppnfd 45717* | If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = +∞) | ||
| Theorem | limsupresuz 45718 | If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝑍)) = (lim sup‘𝐹)) | ||
| Theorem | limsupub 45719* | If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) | ||
| Theorem | limsupres 45720 | The superior limit of a restriction is less than or equal to the original superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐶)) ≤ (lim sup‘𝐹)) | ||
| Theorem | climinf2lem 45721* | A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) | ||
| Theorem | climinf2 45722* | A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) | ||
| Theorem | limsupvaluz 45723* | The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ*, < )) | ||
| Theorem | limsupresuz2 45724 | If the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → dom 𝐹 ⊆ ℤ) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝑍)) = (lim sup‘𝐹)) | ||
| Theorem | limsuppnflem 45725* | If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) | ||
| Theorem | limsuppnf 45726* | If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) | ||
| Theorem | limsupubuzlem 45727* | If the limsup is not +∞, then the function is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝑋 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝐾 ∈ ℝ) & ⊢ (𝜑 → ∀𝑗 ∈ 𝑍 (𝐾 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑌)) & ⊢ 𝑁 = if((⌈‘𝐾) ≤ 𝑀, 𝑀, (⌈‘𝐾)) & ⊢ 𝑊 = sup(ran (𝑗 ∈ (𝑀...𝑁) ↦ (𝐹‘𝑗)), ℝ, < ) & ⊢ 𝑋 = if(𝑊 ≤ 𝑌, 𝑌, 𝑊) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥) | ||
| Theorem | limsupubuz 45728* | For a real-valued function on a set of upper integers, if the superior limit is not +∞, then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥) | ||
| Theorem | climinf2mpt 45729* | A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝑘 = 𝑗 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) → 𝐶 ≤ 𝐵) & ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ inf(ran (𝑘 ∈ 𝑍 ↦ 𝐵), ℝ*, < )) | ||
| Theorem | climinfmpt 45730* | A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝑘 = 𝑗 → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) → 𝐶 ≤ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ inf(ran (𝑘 ∈ 𝑍 ↦ 𝐵), ℝ*, < )) | ||
| Theorem | climinf3 45731* | A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) | ||
| Theorem | limsupvaluzmpt 45732* | The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < )) | ||
| Theorem | limsupequzmpt2 45733* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐴 & ⊢ Ⅎ𝑗𝐵 & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
| Theorem | limsupubuzmpt 45734* | If the limsup is not +∞, then the function is eventually bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ≠ +∞) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥) | ||
| Theorem | limsupmnflem 45735* | The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) | ||
| Theorem | limsupmnf 45736* | The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) | ||
| Theorem | limsupequzlem 45737* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) | ||
| Theorem | limsupequz 45738* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ Ⅎ𝑘𝐺 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) | ||
| Theorem | limsupre2lem 45739* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)))) | ||
| Theorem | limsupre2 45740* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)))) | ||
| Theorem | limsupmnfuzlem 45741* | The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) | ||
| Theorem | limsupmnfuz 45742* | The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) | ||
| Theorem | limsupequzmptlem 45743* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) & ⊢ 𝐾 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
| Theorem | limsupequzmpt 45744* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
| Theorem | limsupre2mpt 45745* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 < 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 < 𝑦)))) | ||
| Theorem | limsupequzmptf 45746* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐴 & ⊢ Ⅎ𝑗𝐵 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim sup‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
| Theorem | limsupre3lem 45747* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) | ||
| Theorem | limsupre3 45748* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) | ||
| Theorem | limsupre3mpt 45749* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑦 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 ∧ 𝑦 ≤ 𝐵) ∧ ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑘 ≤ 𝑥 → 𝐵 ≤ 𝑦)))) | ||
| Theorem | limsupre3uzlem 45750* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥))) | ||
| Theorem | limsupre3uz 45751* | Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥))) | ||
| Theorem | limsupreuz 45752* | Given a function on the reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐹‘𝑗) ≤ 𝑥))) | ||
| Theorem | limsupvaluz2 45753* | The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, < )), ℝ, < )) | ||
| Theorem | limsupreuzmpt 45754* | Given a function on the reals, defined on a set of upper integers, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ 𝐵 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝐵 ≤ 𝑥))) | ||
| Theorem | supcnvlimsup 45755* | If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹)) | ||
| Theorem | supcnvlimsupmpt 45756* | If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝑗 ∈ (ℤ≥‘𝑘) ↦ 𝐵), ℝ*, < )) ⇝ (lim sup‘(𝑗 ∈ 𝑍 ↦ 𝐵))) | ||
| Theorem | 0cnv 45757 | If ∅ is a complex number, then it converges to itself. See 0ncn 11173 and its comment; see also the comment in climlimsupcex 45784. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) | ||
| Theorem | climuzlem 45758* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) | ||
| Theorem | climuz 45759* | Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) ⇒ ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < 𝑥))) | ||
| Theorem | lmbr3v 45760* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) | ||
| Theorem | climisp 45761* | If a sequence converges to an isolated point (w.r.t. the standard topology on the complex numbers) then the sequence eventually becomes that point. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ≠ 𝐴) → 𝑋 ≤ (abs‘((𝐹‘𝑘) − 𝐴))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) = 𝐴) | ||
| Theorem | lmbr3 45762* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) | ||
| Theorem | climrescn 45763* | A sequence converging w.r.t. the standard topology on the complex numbers, eventually becomes a sequence of complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 Fn 𝑍) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℂ) | ||
| Theorem | climxrrelem 45764* | If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ ((𝜑 ∧ +∞ ∈ ℂ) → 𝐷 ≤ (abs‘(+∞ − 𝐴))) & ⊢ ((𝜑 ∧ -∞ ∈ ℂ) → 𝐷 ≤ (abs‘(-∞ − 𝐴))) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) | ||
| Theorem | climxrre 45765* | If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) | ||
| Syntax | clsi 45766 | Extend class notation to include the liminf function. (actually, it makes sense for any extended real function defined on a subset of RR which is not upper-bounded) |
| class lim inf | ||
| Definition | df-liminf 45767* | Define the inferior limit of a sequence of extended real numbers. (Contributed by GS, 2-Jan-2022.) |
| ⊢ lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )) | ||
| Theorem | limsuplt2 45768* | The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑘 ∈ ℝ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) < 𝐴)) | ||
| Theorem | liminfgord 45769 | Ordering property of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → inf(((𝐹 “ (𝐴[,)+∞)) ∩ ℝ*), ℝ*, < ) ≤ inf(((𝐹 “ (𝐵[,)+∞)) ∩ ℝ*), ℝ*, < )) | ||
| Theorem | limsupvald 45770* | The superior limit of a sequence 𝐹 of extended real numbers is the infimum of the set of suprema of all restrictions of 𝐹 to an upperset of reals . (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) | ||
| Theorem | limsupresicompt 45771* | The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑍 = (𝑀[,)+∞) ⇒ ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = (lim sup‘(𝑥 ∈ (𝐴 ∩ 𝑍) ↦ 𝐵))) | ||
| Theorem | limsupcli 45772 | Closure of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐹 ∈ 𝑉 ⇒ ⊢ (lim sup‘𝐹) ∈ ℝ* | ||
| Theorem | liminfgf 45773 | Closure of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ 𝐺:ℝ⟶ℝ* | ||
| Theorem | liminfval 45774* | The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ (𝐹 ∈ 𝑉 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) | ||
| Theorem | climlimsup 45775 | A sequence of real numbers converges if and only if it converges to its superior limit. The first hypothesis is needed (see climlimsupcex 45784 for a counterexample). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim sup‘𝐹))) | ||
| Theorem | limsupge 45776* | The defining property of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐵 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑘 ∈ ℝ 𝐴 ≤ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))) | ||
| Theorem | liminfgval 45777* | Value of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ (𝑀 ∈ ℝ → (𝐺‘𝑀) = inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) | ||
| Theorem | liminfcl 45778 | Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝐹 ∈ 𝑉 → (lim inf‘𝐹) ∈ ℝ*) | ||
| Theorem | liminfvald 45779* | The inferior limit of a set 𝐹. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) | ||
| Theorem | liminfval5 45780* | The inferior limit of an infinite sequence 𝐹 of extended real numbers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf((𝐹 “ (𝑘[,)+∞)), ℝ*, < )) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = sup(ran 𝐺, ℝ*, < )) | ||
| Theorem | limsupresxr 45781 | The superior limit of a function only depends on the restriction of that function to the preimage of the set of extended reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝐹) & ⊢ 𝐴 = (◡𝐹 “ ℝ*) ⇒ ⊢ (𝜑 → (lim sup‘(𝐹 ↾ 𝐴)) = (lim sup‘𝐹)) | ||
| Theorem | liminfresxr 45782 | The inferior limit of a function only depends on the preimage of the extended real part. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝐹) & ⊢ 𝐴 = (◡𝐹 “ ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝐴)) = (lim inf‘𝐹)) | ||
| Theorem | liminfval2 45783* | The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = sup((𝐺 “ 𝐴), ℝ*, < )) | ||
| Theorem | climlimsupcex 45784 | Counterexample for climlimsup 45775, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 11173 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ¬ 𝑀 ∈ ℤ & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐹 = ∅ ⇒ ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) | ||
| Theorem | liminfcld 45785 | Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ*) | ||
| Theorem | liminfresico 45786 | The inferior limit doesn't change when a function is restricted to an upperset of reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑍 = (𝑀[,)+∞) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) | ||
| Theorem | limsup10exlem 45787* | The range of the given function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) & ⊢ (𝜑 → 𝐾 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹 “ (𝐾[,)+∞)) = {0, 1}) | ||
| Theorem | limsup10ex 45788 | The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) ⇒ ⊢ (lim sup‘𝐹) = 1 | ||
| Theorem | liminf10ex 45789 | The inferior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) ⇒ ⊢ (lim inf‘𝐹) = 0 | ||
| Theorem | liminflelimsuplem 45790* | The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) | ||
| Theorem | liminflelimsup 45791* | The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex 45812 for a counterexample). The inequality can be strict, see liminfltlimsupex 45796. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) | ||
| Theorem | limsupgtlem 45792* | For any positive real, the superior limit of F is larger than any of its values at large enough arguments, up to that positive real. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) | ||
| Theorem | limsupgt 45793* | Given a sequence of real numbers, there exists an upper part of the sequence that's appxoximated from below by the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) | ||
| Theorem | liminfresre 45794 | The inferior limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim inf‘(𝐹 ↾ ℝ)) = (lim inf‘𝐹)) | ||
| Theorem | liminfresicompt 45795* | The inferior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑍 = (𝑀[,)+∞) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ 𝑍) ↦ 𝐵)) = (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵))) | ||
| Theorem | liminfltlimsupex 45796 | An example where the lim inf is strictly smaller than the lim sup. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) ⇒ ⊢ (lim inf‘𝐹) < (lim sup‘𝐹) | ||
| Theorem | liminfgelimsup 45797* | The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) | ||
| Theorem | liminfvalxr 45798* | Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒(𝐹‘𝑥)))) | ||
| Theorem | liminfresuz 45799 | If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) ⇒ ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) | ||
| Theorem | liminflelimsupuz 45800 | The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |