![]() |
Metamath
Proof Explorer Theorem List (p. 458 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | liminfresicompt 45701* | The inferior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ 𝑍 = (𝑀[,)+∞) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim inf‘(𝑥 ∈ (𝐴 ∩ 𝑍) ↦ 𝐵)) = (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵))) | ||
Theorem | liminfltlimsupex 45702 | An example where the lim inf is strictly smaller than the lim sup. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, 1)) ⇒ ⊢ (lim inf‘𝐹) < (lim sup‘𝐹) | ||
Theorem | liminfgelimsup 45703* | The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑘 ∈ ℝ ∃𝑗 ∈ (𝑘[,)+∞)((𝐹 “ (𝑗[,)+∞)) ∩ ℝ*) ≠ ∅) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) | ||
Theorem | liminfvalxr 45704* | Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒(𝐹‘𝑥)))) | ||
Theorem | liminfresuz 45705 | If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → dom (𝐹 ↾ ℝ) ⊆ ℤ) ⇒ ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) | ||
Theorem | liminflelimsupuz 45706 | The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) | ||
Theorem | liminfvalxrmpt 45707* | Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) | ||
Theorem | liminfresuz2 45708 | If the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → dom 𝐹 ⊆ ℤ) ⇒ ⊢ (𝜑 → (lim inf‘(𝐹 ↾ 𝑍)) = (lim inf‘𝐹)) | ||
Theorem | liminfgelimsupuz 45709 | The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim sup‘𝐹) ≤ (lim inf‘𝐹) ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) | ||
Theorem | liminfval4 45710* | Alternate definition of lim inf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝐵))) | ||
Theorem | liminfval3 45711* | Alternate definition of lim inf when the given function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim sup‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) | ||
Theorem | liminfequzmpt2 45712* | Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐴 & ⊢ Ⅎ𝑗𝐵 & ⊢ 𝐴 = (ℤ≥‘𝑀) & ⊢ 𝐵 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐾 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝐾)) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (lim inf‘(𝑗 ∈ 𝐴 ↦ 𝐶)) = (lim inf‘(𝑗 ∈ 𝐵 ↦ 𝐶))) | ||
Theorem | liminfvaluz 45713* | Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) | ||
Theorem | liminf0 45714 | The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (lim inf‘∅) = +∞ | ||
Theorem | limsupval4 45715* | Alternate definition of lim inf when the given a function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝑀[,)+∞))) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (lim sup‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = -𝑒(lim inf‘(𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) | ||
Theorem | liminfvaluz2 45716* | Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (lim inf‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝐵))) | ||
Theorem | liminfvaluz3 45717* | Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑘)))) | ||
Theorem | liminflelimsupcex 45718 | A counterexample for liminflelimsup 45697, showing that the second hypothesis is needed. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (lim sup‘∅) < (lim inf‘∅) | ||
Theorem | limsupvaluz3 45719* | Alternate definition of lim inf for an extended real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝑒𝐵))) | ||
Theorem | liminfvaluz4 45720* | Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑘 ∈ 𝑍 ↦ -(𝐹‘𝑘)))) | ||
Theorem | limsupvaluz4 45721* | Alternate definition of lim inf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (lim sup‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = -𝑒(lim inf‘(𝑘 ∈ 𝑍 ↦ -𝐵))) | ||
Theorem | climliminflimsupd 45722 | If a sequence of real numbers converges, its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = (lim sup‘𝐹)) | ||
Theorem | liminfreuzlem 45723* | Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) | ||
Theorem | liminfreuz 45724* | Given a function on the reals, its inferior limit is real if and only if two condition holds: 1. there is a real number that is greater than or equal to the function, infinitely often; 2. there is a real number that is smaller than or equal to the function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → ((lim inf‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) | ||
Theorem | liminfltlem 45725* | Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) | ||
Theorem | liminflt 45726* | Given a sequence of real numbers, there exists an upper part of the sequence that's approximated from above by the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(lim inf‘𝐹) < ((𝐹‘𝑘) + 𝑋)) | ||
Theorem | climliminf 45727 | A sequence of real numbers converges if and only if it converges to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim inf‘𝐹))) | ||
Theorem | liminflimsupclim 45728 | A sequence of real numbers converges if its inferior limit is real, and it is greater than or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz 45706). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → (lim inf‘𝐹) ∈ ℝ) & ⊢ (𝜑 → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | ||
Theorem | climliminflimsup 45729 | A sequence of real numbers converges if and only if its inferior limit is real and it is greater than or equal to its superior limit (in such a case, they are actually equal, see liminfgelimsupuz 45709). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))) | ||
Theorem | climliminflimsup2 45730 | A sequence of real numbers converges if and only if its superior limit is real and it is less than or equal to its inferior limit (in such a case, they are actually equal, see liminfgelimsupuz 45709). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))) | ||
Theorem | climliminflimsup3 45731 | A sequence of real numbers converges if and only if its inferior limit is real and equal to its superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim inf‘𝐹) = (lim sup‘𝐹)))) | ||
Theorem | climliminflimsup4 45732 | A sequence of real numbers converges if and only if its superior limit is real and equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim sup‘𝐹) ∈ ℝ ∧ (lim inf‘𝐹) = (lim sup‘𝐹)))) | ||
Theorem | limsupub2 45733* | A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) & ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) | ||
Theorem | limsupubuz2 45734* | A sequence with values in the extended reals, and with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) < +∞) | ||
Theorem | xlimpnfxnegmnf 45735* | A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ Ⅎ𝑗𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) | ||
Theorem | liminflbuz2 45736* | A sequence with values in the extended reals, and with liminf that is not -∞, is eventually greater than -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ Ⅎ𝑗𝜑 & ⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → (lim inf‘𝐹) ≠ -∞) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-∞ < (𝐹‘𝑗)) | ||
Theorem | liminfpnfuz 45737* | The inferior limit of a function is +∞ if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) | ||
Theorem | liminflimsupxrre 45738* | A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) & ⊢ (𝜑 → (lim inf‘𝐹) ≠ -∞) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑘)):(ℤ≥‘𝑘)⟶ℝ) | ||
Textbooks generally use a single symbol to denote the limit of a sequence of real numbers. But then, three distinct definitions are usually given: one for the case of convergence to a real number, one for the case of limit to +∞ and one for the case of limit to -∞. It turns out that these three definitions can be expressed as the limit w.r.t. to the standard topology on the extended reals. In this section, a relation ~~>* is defined that captures all three definitions (and can be applied to sequences of extended reals, also), see dfxlim2 45769. | ||
Syntax | clsxlim 45739 | Extend class notation with convergence relation for limits in the extended real numbers. |
class ~~>* | ||
Definition | df-xlim 45740 | Define the convergence relation for extended real sequences. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | ||
Theorem | xlimrel 45741 | The limit on extended reals is a relation. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Rel ~~>* | ||
Theorem | xlimres 45742 | A function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑀))~~>*𝐴)) | ||
Theorem | xlimcl 45743 | The limit of a sequence of extended real numbers is an extended real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝐹~~>*𝐴 → 𝐴 ∈ ℝ*) | ||
Theorem | rexlimddv2 45744* | Restricted existential elimination rule of natural deduction. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | xlimclim 45745 | Given a sequence of reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals, if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals (see climreeq 45534). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | xlimconst 45746* | A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹 Fn 𝑍) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
Theorem | climxlim 45747 | A converging sequence in the reals is a converging sequence in the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
Theorem | xlimbr 45748* | Express the binary relation "sequence 𝐹 converges to point 𝑃 " w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝑃 ↔ (𝑃 ∈ ℝ* ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) | ||
Theorem | fuzxrpmcn 45749 | A function mapping from an upper set of integers to the extended reals is a partial map on the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) | ||
Theorem | cnrefiisplem 45750* | Lemma for cnrefiisp 45751 (some local definitions are used). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝐶 = (ℝ ∪ 𝐵) & ⊢ 𝐷 = ({(abs‘(ℑ‘𝐴))} ∪ ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦 − 𝐴))}) & ⊢ 𝑋 = inf(𝐷, ℝ*, < ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) | ||
Theorem | cnrefiisp 45751* | A non-real, complex number is an isolated point w.r.t. the union of the reals with any finite set (the extended reals is an example of such a union). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ 𝐶 = (ℝ ∪ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ 𝐶 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 𝐴) → 𝑥 ≤ (abs‘(𝑦 − 𝐴)))) | ||
Theorem | xlimxrre 45752* | If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐹~~>*𝐴) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) | ||
Theorem | xlimmnfvlem1 45753* | Lemma for xlimmnfv 45755: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*-∞) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑋) | ||
Theorem | xlimmnfvlem2 45754* | Lemma for xlimmnf 45762: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) < 𝑥) ⇒ ⊢ (𝜑 → 𝐹~~>*-∞) | ||
Theorem | xlimmnfv 45755* | A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) | ||
Theorem | xlimconst2 45756* | A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑘𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
Theorem | xlimpnfvlem1 45757* | Lemma for xlimpnfv 45759: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*+∞) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑋 ≤ (𝐹‘𝑘)) | ||
Theorem | xlimpnfvlem2 45758* | Lemma for xlimpnfv 45759: the "if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑗𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 < (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → 𝐹~~>*+∞) | ||
Theorem | xlimpnfv 45759* | A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) | ||
Theorem | xlimclim2lem 45760* | Lemma for xlimclim2 45761. Here it is additionally assumed that the sequence will eventually become (and stay) real. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | xlimclim2 45761 | Given a sequence of extended reals, it converges to a real number 𝐴 w.r.t. the standard topology on the reals (see climreeq 45534), if and only if it converges to 𝐴 w.r.t. to the standard topology on the extended reals. In order for the first part of the statement to even make sense, the sequence will of course eventually become (and stay) real: showing this, is the key step of the proof. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | xlimmnf 45762* | A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) | ||
Theorem | xlimpnf 45763* | A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) | ||
Theorem | xlimmnfmpt 45764* | A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) & ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) ⇒ ⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐵 ≤ 𝑥)) | ||
Theorem | xlimpnfmpt 45765* | A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) & ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) | ||
Theorem | climxlim2lem 45766 | In this lemma for climxlim2 45767 there is the additional assumption that the converging function is complex-valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
Theorem | climxlim2 45767 | A sequence of extended reals, converging w.r.t. the standard topology on the complex numbers is a converging sequence w.r.t. the standard topology on the extended reals. This is non-trivial, because +∞ and -∞ could, in principle, be complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) ⇒ ⊢ (𝜑 → 𝐹~~>*𝐴) | ||
Theorem | dfxlim2v 45768* | An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))))) | ||
Theorem | dfxlim2 45769* | An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑘𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))))) | ||
Theorem | climresd 45770 | A function restricted to upper integers converges iff the original function converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) | ||
Theorem | climresdm 45771 | A real function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ )) | ||
Theorem | dmclimxlim 45772 | A real valued sequence that converges w.r.t. the topology on the complex numbers, converges w.r.t. the topology on the extended reals (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) & ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ~~>*) | ||
Theorem | xlimmnflimsup2 45773 | A sequence of extended reals converges to -∞ if and only if its superior limit is also -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*-∞ ↔ (lim sup‘𝐹) = -∞)) | ||
Theorem | xlimuni 45774 | An infinite sequence converges to at most one limit (w.r.t. to the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝐹~~>*𝐴) & ⊢ (𝜑 → 𝐹~~>*𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | xlimclimdm 45775 | A sequence of extended reals that converges to a real w.r.t. the standard topology on the extended reals, also converges w.r.t. to the standard topology on the complex numbers. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*𝐴) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | ||
Theorem | xlimfun 45776 | The convergence relation on the extended reals is a function. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ Fun ~~>* | ||
Theorem | xlimmnflimsup 45777 | If a sequence of extended reals converges to -∞ then its superior limit is also -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*-∞) ⇒ ⊢ (𝜑 → (lim sup‘𝐹) = -∞) | ||
Theorem | xlimdm 45778 | Two ways to express that a function has a limit. (The expression (~~>*‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)) | ||
Theorem | xlimpnfxnegmnf2 45779* | A sequence converges to +∞ if and only if its negation converges to -∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ Ⅎ𝑗𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))~~>*-∞)) | ||
Theorem | xlimresdm 45780 | A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ~~>*)) | ||
Theorem | xlimpnfliminf 45781 | If a sequence of extended reals converges to +∞ then its superior limit is also +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) & ⊢ (𝜑 → 𝐹~~>*+∞) ⇒ ⊢ (𝜑 → (lim inf‘𝐹) = +∞) | ||
Theorem | xlimpnfliminf2 45782 | A sequence of extended reals converges to +∞ if and only if its superior limit is also +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹~~>*+∞ ↔ (lim inf‘𝐹) = +∞)) | ||
Theorem | xlimliminflimsup 45783 | A sequence of extended reals converges if and only if its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) | ||
Theorem | xlimlimsupleliminf 45784 | A sequence of extended reals converges if and only if its superior limit is smaller than or equal to its inferior limit. (Contributed by Glauco Siliprandi, 2-Dec-2023.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) | ||
Theorem | coseq0 45785 | A complex number whose cosine is zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) = 0 ↔ ((𝐴 / π) + (1 / 2)) ∈ ℤ)) | ||
Theorem | sinmulcos 45786 | Multiplication formula for sine and cosine. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) = (((sin‘(𝐴 + 𝐵)) + (sin‘(𝐴 − 𝐵))) / 2)) | ||
Theorem | coskpi2 45787 | The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · π)) = if(2 ∥ 𝐾, 1, -1)) | ||
Theorem | cosnegpi 45788 | The cosine of negative π is negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (cos‘-π) = -1 | ||
Theorem | sinaover2ne0 45789 | If 𝐴 in (0, 2π) then sin(𝐴 / 2) is not 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (0(,)(2 · π)) → (sin‘(𝐴 / 2)) ≠ 0) | ||
Theorem | cosknegpi 45790 | The cosine of an integer multiple of negative π is either 1 or negative 1. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐾 ∈ ℤ → (cos‘(𝐾 · -π)) = if(2 ∥ 𝐾, 1, -1)) | ||
Theorem | mulcncff 45791 | The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹 ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ (𝑋–cn→ℂ)) | ||
Theorem | cncfmptssg 45792* | A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss 45508 because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐸 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐸) ∈ (𝐶–cn→𝐷)) | ||
Theorem | constcncfg 45793* | A constant function is a continuous function on ℂ. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐶 ⊆ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐴–cn→𝐶)) | ||
Theorem | idcncfg 45794* | The identity function is a continuous function on ℂ. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ ℂ) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑥) ∈ (𝐴–cn→𝐵)) | ||
Theorem | cncfshift 45795* | A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 + 𝑇)} & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) & ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ (𝐹‘(𝑥 − 𝑇))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐵–cn→ℂ)) | ||
Theorem | resincncf 45796 | sin restricted to reals is continuous from reals to reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (sin ↾ ℝ) ∈ (ℝ–cn→ℝ) | ||
Theorem | addccncf2 45797* | Adding a constant is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝑥)) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → 𝐹 ∈ (𝐴–cn→ℂ)) | ||
Theorem | 0cnf 45798 | The empty set is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ∅ ∈ ({∅} Cn {∅}) | ||
Theorem | fsumcncf 45799* | The finite sum of continuous complex function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝑋–cn→ℂ)) | ||
Theorem | cncfperiod 45800* | A periodic continuous function stays continuous if the domain is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ 𝐵 = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 + 𝑇)} & ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) & ⊢ (𝜑 → 𝐵 ⊆ dom 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (𝐴–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐵) ∈ (𝐵–cn→ℂ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |