![]() |
Metamath
Proof Explorer Theorem List (p. 458 of 482) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30715) |
![]() (30716-32238) |
![]() (32239-48161) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sge0fsummpt 45701* | The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | sge0sup 45702* | The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹 ↾ 𝑥))), ℝ*, < )) | ||
Theorem | sge0less 45703 | A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ≤ (Σ^‘𝐹)) | ||
Theorem | sge0rnbnd 45704* | The range used in the definition of Σ^ is bounded, when the whole sum is a real number. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) | ||
Theorem | sge0pr 45705* | Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) | ||
Theorem | sge0gerp 45706* | The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝑋 ∩ Fin)𝐴 ≤ ((Σ^‘(𝐹 ↾ 𝑧)) +𝑒 𝑥)) ⇒ ⊢ (𝜑 → 𝐴 ≤ (Σ^‘𝐹)) | ||
Theorem | sge0pnffigt 45707* | If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑌 < (Σ^‘(𝐹 ↾ 𝑥))) | ||
Theorem | sge0ssre 45708 | If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ 𝑌)) ∈ ℝ) | ||
Theorem | sge0lefi 45709* | A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((Σ^‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹 ↾ 𝑥)) ≤ 𝐴)) | ||
Theorem | sge0lessmpt 45710* | A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) | ||
Theorem | sge0ltfirp 45711* | If the sum of nonnegative extended reals is real, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘𝐹) < ((Σ^‘(𝐹 ↾ 𝑥)) + 𝑌)) | ||
Theorem | sge0prle 45712* | The sum of a pair of nonnegative extended reals is less than or equal their extended addition. When it is a distinct pair, than equality holds, see sge0pr 45705. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) ≤ (𝐷 +𝑒 𝐸)) | ||
Theorem | sge0gerpmpt 45713* | The arbitrary sum of nonnegative extended reals is greater than or equal to a given extended real number if this number can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐶 ≤ ((Σ^‘(𝑥 ∈ 𝑧 ↦ 𝐵)) +𝑒 𝑦)) ⇒ ⊢ (𝜑 → 𝐶 ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵))) | ||
Theorem | sge0resrnlem 45714 | The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑋 ∈ 𝒫 𝐴) & ⊢ (𝜑 → (𝐺 ↾ 𝑋):𝑋–1-1-onto→ran 𝐺) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) | ||
Theorem | sge0resrn 45715 | The sum of nonnegative extended reals restricted to the range of a function is less than or equal to the sum of the composition of the two functions (well-order hypothesis allows to avoid using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐵⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) & ⊢ (𝜑 → 𝑅 We 𝐴) ⇒ ⊢ (𝜑 → (Σ^‘(𝐹 ↾ ran 𝐺)) ≤ (Σ^‘(𝐹 ∘ 𝐺))) | ||
Theorem | sge0ssrempt 45716* | If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵)) ∈ ℝ) | ||
Theorem | sge0resplit 45717 | Σ^ splits into two parts, when it's a real number. This is a special case of sge0split 45720. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑈 = (𝐴 ∪ 𝐵) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝐹:𝑈⟶(0[,]+∞)) & ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = ((Σ^‘(𝐹 ↾ 𝐴)) + (Σ^‘(𝐹 ↾ 𝐵)))) | ||
Theorem | sge0le 45718* | If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝐺:𝑋⟶(0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ≤ (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ≤ (Σ^‘𝐺)) | ||
Theorem | sge0ltfirpmpt 45719* | If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < ((Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) + 𝑌)) | ||
Theorem | sge0split 45720 | Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝑈 = (𝐴 ∪ 𝐵) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝐹:𝑈⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = ((Σ^‘(𝐹 ↾ 𝐴)) +𝑒 (Σ^‘(𝐹 ↾ 𝐵)))) | ||
Theorem | sge0lempt 45721* | If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) | ||
Theorem | sge0splitmpt 45722* | Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) | ||
Theorem | sge0ss 45723* | Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) | ||
Theorem | sge0iunmptlemfi 45724* | Sum of nonnegative extended reals over a disjoint indexed union (in this lemma, for a finite index set). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))))) | ||
Theorem | sge0p1 45725* | The addition of the next term in a finite sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞)) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵)) | ||
Theorem | sge0iunmptlemre 45726* | Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)) ∈ ℝ) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶)) ∈ ℝ*) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)))) ∈ ℝ*) & ⊢ (𝜑 → (𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶):∪ 𝑥 ∈ 𝐴 𝐵⟶(0[,]+∞)) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))))) | ||
Theorem | sge0fodjrnlem 45727* | Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) & ⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) & ⊢ 𝑍 = (◡𝐹 “ {∅}) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) | ||
Theorem | sge0fodjrn 45728* | Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) & ⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) | ||
Theorem | sge0iunmpt 45729* | Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↦ 𝐶)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))))) | ||
Theorem | sge0iun 45730* | Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) | ||
Theorem | sge0nemnf 45731 | The generalized sum of nonnegative extended reals is not minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ≠ -∞) | ||
Theorem | sge0rpcpnf 45732* | The sum of an infinite number of a positive constant, is +∞ (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = +∞) | ||
Theorem | sge0rernmpt 45733* | If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | ||
Theorem | sge0lefimpt 45734* | A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) ≤ 𝐶)) | ||
Theorem | nn0ssge0 45735 | Nonnegative integers are nonnegative reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ℕ0 ⊆ (0[,)+∞) | ||
Theorem | sge0clmpt 45736* | The generalized sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ (0[,]+∞)) | ||
Theorem | sge0ltfirpmpt2 45737* | If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < (Σ𝑥 ∈ 𝑦 𝐵 + 𝑌)) | ||
Theorem | sge0isum 45738 | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶(0[,)+∞)) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = 𝐵) | ||
Theorem | sge0xrclmpt 45739* | The generalized sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ*) | ||
Theorem | sge0xp 45740* | Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑗 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷))) | ||
Theorem | sge0isummpt 45741* | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = 𝐵) | ||
Theorem | sge0ad2en 45742* | The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) | ||
Theorem | sge0isummpt2 45743* | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) | ||
Theorem | sge0xaddlem1 45744* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ⊆ 𝐴) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → 𝑊 ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) < (Σ𝑘 ∈ 𝑈 𝐵 + (𝐸 / 2))) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) < (Σ𝑘 ∈ 𝑊 𝐶 + (𝐸 / 2))) & ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) + (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸)) | ||
Theorem | sge0xaddlem2 45745* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) +𝑒 (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)))) | ||
Theorem | sge0xadd 45746* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) +𝑒 (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)))) | ||
Theorem | sge0fsummptf 45747* | The generalized sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | sge0snmptf 45748* | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴} ↦ 𝐵)) = 𝐶) | ||
Theorem | sge0ge0mpt 45749* | The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → 0 ≤ (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵))) | ||
Theorem | sge0repnfmpt 45750* | The of nonnegative extended reals is a real number if and only if it is not +∞. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞)) | ||
Theorem | sge0pnffigtmpt 45751* | If the generalized sum of nonnegative reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) | ||
Theorem | sge0splitsn 45752* | Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 𝐷)) | ||
Theorem | sge0pnffsumgt 45753* | If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘 ∈ 𝑥 𝐵) | ||
Theorem | sge0gtfsumgt 45754* | If the generalized sum of nonnegative reals is larger than a given number, then that number can be dominated by a finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘 ∈ 𝑦 𝐵) | ||
Theorem | sge0uzfsumgt 45755* | If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝐾) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵) | ||
Theorem | sge0pnfmpt 45756* | If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | ||
Theorem | sge0seq 45757 | A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶(0[,)+∞)) & ⊢ 𝐺 = seq𝑀( + , 𝐹) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran 𝐺, ℝ*, < )) | ||
Theorem | sge0reuz 45758* | Value of the generalized sum of nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < )) | ||
Theorem | sge0reuzb 45759* | Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) | ||
Proofs for most of the theorems in section 112 of [Fremlin1] | ||
Syntax | cmea 45760 | Extend class notation with the class of measures. |
class Meas | ||
Definition | df-mea 45761* | Define the class of measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Meas = {𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) = (Σ^‘(𝑥 ↾ 𝑦))))} | ||
Theorem | ismea 45762* | Express the predicate "𝑀 is a measure." Definition 112A of [Fremlin1] p. 14. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | ||
Theorem | dmmeasal 45763 | The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
Theorem | meaf 45764 | A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 ⇒ ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) | ||
Theorem | mea0 45765 | The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) ⇒ ⊢ (𝜑 → (𝑀‘∅) = 0) | ||
Theorem | nnfoctbdjlem 45766* | There exists a mapping from ℕ onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐺:𝐴–1-1-onto→𝑋) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑋 𝑦) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) | ||
Theorem | nnfoctbdj 45767* | There exists a mapping from ℕ onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑋 𝑦) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) | ||
Theorem | meadjuni 45768* | The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) | ||
Theorem | meacl 45769 | The measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) | ||
Theorem | iundjiunlem 45770* | The sets in the sequence 𝐹 are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) & ⊢ (𝜑 → 𝐽 ∈ 𝑍) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → 𝐽 < 𝐾) ⇒ ⊢ (𝜑 → ((𝐹‘𝐽) ∩ (𝐹‘𝐾)) = ∅) | ||
Theorem | iundjiun 45771* | Given a sequence 𝐸 of sets, a sequence 𝐹 of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑉) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → ((∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ∧ ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) | ||
Theorem | meaxrcl 45772 | The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) | ||
Theorem | meadjun 45773 | The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
Theorem | meassle 45774 | The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
Theorem | meaunle 45775 | The measure of the union of two sets is less than or equal to the sum of the measures, Property 112C (c) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
Theorem | meadjiunlem 45776* | The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐺:𝑋⟶𝑆) & ⊢ 𝑌 = {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} & ⊢ (𝜑 → Disj 𝑖 ∈ 𝑋 (𝐺‘𝑖)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀 ∘ 𝐺))) | ||
Theorem | meadjiun 45777* | The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑘 ∈ 𝐴 𝐵) = (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)))) | ||
Theorem | ismeannd 45778* | Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆 ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛))))) ⇒ ⊢ (𝜑 → 𝑀 ∈ Meas) | ||
Theorem | meaiunlelem 45779* | The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | ||
Theorem | meaiunle 45780* | The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | ||
Theorem | psmeasurelem 45781* | 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) & ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) & ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) | ||
Theorem | psmeasure 45782* | Point supported measure, Remark 112B (d) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) & ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) ⇒ ⊢ (𝜑 → 𝑀 ∈ Meas) | ||
Theorem | voliunsge0lem 45783* | The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))) & ⊢ (𝜑 → 𝐸:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) | ||
Theorem | voliunsge0 45784* | The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐸:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) | ||
Theorem | volmea 45785 | The Lebesgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → vol ∈ Meas) | ||
Theorem | meage0 45786 | If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) ⇒ ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) | ||
Theorem | meadjunre 45787 | The measure of the union of two disjoint sets, with finite measure, is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) + (𝑀‘𝐵))) | ||
Theorem | meassre 45788 | If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) | ||
Theorem | meale0eq0 45789 | A measure that is less than or equal to 0 is 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ≤ 0) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) = 0) | ||
Theorem | meadif 45790 | The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) | ||
Theorem | meaiuninclem 45791* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of increasing measurable sets (with uniformly bounded measure) then the measure of the union is the union of the measure. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiuninc 45792* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiuninc2 45793* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ≤ 𝐵) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiunincf 45794* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiuninc3v 45795* | Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 45792 and meaiuninc2 45793 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiuninc3 45796* | Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 45792 and meaiuninc2 45793 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiininclem 45797* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) & ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) & ⊢ 𝐹 = ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiininc 45798* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) & ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Theorem | meaiininc2 45799* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Proofs for most of the theorems in section 113 of [Fremlin1] | ||
Syntax | come 45800 | Extend class notation with the class of outer measures. |
class OutMeas |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |