Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen2 Structured version   Visualization version   GIF version

Theorem unisalgen2 45060
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
unisalgen2.x (πœ‘ β†’ 𝐴 ∈ 𝑉)
unisalgen2.s 𝑆 = (SalGenβ€˜π΄)
Assertion
Ref Expression
unisalgen2 (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ 𝐴)

Proof of Theorem unisalgen2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 unisalgen2.s . . . . . 6 𝑆 = (SalGenβ€˜π΄)
21eqcomi 2741 . . . . 5 (SalGenβ€˜π΄) = 𝑆
32a1i 11 . . . 4 (πœ‘ β†’ (SalGenβ€˜π΄) = 𝑆)
4 unisalgen2.x . . . . 5 (πœ‘ β†’ 𝐴 ∈ 𝑉)
54dfsalgen2 45047 . . . 4 (πœ‘ β†’ ((SalGenβ€˜π΄) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ βˆͺ 𝑆 = βˆͺ 𝐴 ∧ 𝐴 βŠ† 𝑆) ∧ βˆ€π‘₯ ∈ SAlg ((βˆͺ π‘₯ = βˆͺ 𝐴 ∧ 𝐴 βŠ† π‘₯) β†’ 𝑆 βŠ† π‘₯))))
63, 5mpbid 231 . . 3 (πœ‘ β†’ ((𝑆 ∈ SAlg ∧ βˆͺ 𝑆 = βˆͺ 𝐴 ∧ 𝐴 βŠ† 𝑆) ∧ βˆ€π‘₯ ∈ SAlg ((βˆͺ π‘₯ = βˆͺ 𝐴 ∧ 𝐴 βŠ† π‘₯) β†’ 𝑆 βŠ† π‘₯)))
76simpld 495 . 2 (πœ‘ β†’ (𝑆 ∈ SAlg ∧ βˆͺ 𝑆 = βˆͺ 𝐴 ∧ 𝐴 βŠ† 𝑆))
87simp2d 1143 1 (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948  βˆͺ cuni 4908  β€˜cfv 6543  SAlgcsalg 45014  SalGencsalgen 45018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-salg 45015  df-salgen 45019
This theorem is referenced by:  incsmf  45448  decsmf  45473
  Copyright terms: Public domain W3C validator