Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen2 Structured version   Visualization version   GIF version

Theorem unisalgen2 43783
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
unisalgen2.x (𝜑𝐴𝑉)
unisalgen2.s 𝑆 = (SalGen‘𝐴)
Assertion
Ref Expression
unisalgen2 (𝜑 𝑆 = 𝐴)

Proof of Theorem unisalgen2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unisalgen2.s . . . . . 6 𝑆 = (SalGen‘𝐴)
21eqcomi 2747 . . . . 5 (SalGen‘𝐴) = 𝑆
32a1i 11 . . . 4 (𝜑 → (SalGen‘𝐴) = 𝑆)
4 unisalgen2.x . . . . 5 (𝜑𝐴𝑉)
54dfsalgen2 43770 . . . 4 (𝜑 → ((SalGen‘𝐴) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆) ∧ ∀𝑥 ∈ SAlg (( 𝑥 = 𝐴𝐴𝑥) → 𝑆𝑥))))
63, 5mpbid 231 . . 3 (𝜑 → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆) ∧ ∀𝑥 ∈ SAlg (( 𝑥 = 𝐴𝐴𝑥) → 𝑆𝑥)))
76simpld 494 . 2 (𝜑 → (𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆))
87simp2d 1141 1 (𝜑 𝑆 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883   cuni 4836  cfv 6418  SAlgcsalg 43739  SalGencsalgen 43743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-salg 43740  df-salgen 43744
This theorem is referenced by:  incsmf  44165  decsmf  44189
  Copyright terms: Public domain W3C validator