| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen2 | Structured version Visualization version GIF version | ||
| Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| unisalgen2.x | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| unisalgen2.s | ⊢ 𝑆 = (SalGen‘𝐴) |
| Ref | Expression |
|---|---|
| unisalgen2 | ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisalgen2.s | . . . . . 6 ⊢ 𝑆 = (SalGen‘𝐴) | |
| 2 | 1 | eqcomi 2743 | . . . . 5 ⊢ (SalGen‘𝐴) = 𝑆 |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (SalGen‘𝐴) = 𝑆) |
| 4 | unisalgen2.x | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 4 | dfsalgen2 46328 | . . . 4 ⊢ (𝜑 → ((SalGen‘𝐴) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆) ∧ ∀𝑥 ∈ SAlg ((∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥) → 𝑆 ⊆ 𝑥)))) |
| 6 | 3, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆) ∧ ∀𝑥 ∈ SAlg ((∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥) → 𝑆 ⊆ 𝑥))) |
| 7 | 6 | simpld 494 | . 2 ⊢ (𝜑 → (𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆)) |
| 8 | 7 | simp2d 1143 | 1 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 ∪ cuni 4887 ‘cfv 6541 SAlgcsalg 46295 SalGencsalgen 46299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-salg 46296 df-salgen 46300 |
| This theorem is referenced by: incsmf 46729 decsmf 46754 |
| Copyright terms: Public domain | W3C validator |