Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen2 Structured version   Visualization version   GIF version

Theorem unisalgen2 43455
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
unisalgen2.x (𝜑𝐴𝑉)
unisalgen2.s 𝑆 = (SalGen‘𝐴)
Assertion
Ref Expression
unisalgen2 (𝜑 𝑆 = 𝐴)

Proof of Theorem unisalgen2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unisalgen2.s . . . . . 6 𝑆 = (SalGen‘𝐴)
21eqcomi 2747 . . . . 5 (SalGen‘𝐴) = 𝑆
32a1i 11 . . . 4 (𝜑 → (SalGen‘𝐴) = 𝑆)
4 unisalgen2.x . . . . 5 (𝜑𝐴𝑉)
54dfsalgen2 43442 . . . 4 (𝜑 → ((SalGen‘𝐴) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆) ∧ ∀𝑥 ∈ SAlg (( 𝑥 = 𝐴𝐴𝑥) → 𝑆𝑥))))
63, 5mpbid 235 . . 3 (𝜑 → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆) ∧ ∀𝑥 ∈ SAlg (( 𝑥 = 𝐴𝐴𝑥) → 𝑆𝑥)))
76simpld 498 . 2 (𝜑 → (𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆))
87simp2d 1144 1 (𝜑 𝑆 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  wss 3843   cuni 4796  cfv 6339  SAlgcsalg 43411  SalGencsalgen 43415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-int 4837  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6297  df-fun 6341  df-fv 6347  df-salg 43412  df-salgen 43416
This theorem is referenced by:  incsmf  43837  decsmf  43861
  Copyright terms: Public domain W3C validator