Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen2 Structured version   Visualization version   GIF version

Theorem unisalgen2 46352
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
unisalgen2.x (𝜑𝐴𝑉)
unisalgen2.s 𝑆 = (SalGen‘𝐴)
Assertion
Ref Expression
unisalgen2 (𝜑 𝑆 = 𝐴)

Proof of Theorem unisalgen2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unisalgen2.s . . . . . 6 𝑆 = (SalGen‘𝐴)
21eqcomi 2738 . . . . 5 (SalGen‘𝐴) = 𝑆
32a1i 11 . . . 4 (𝜑 → (SalGen‘𝐴) = 𝑆)
4 unisalgen2.x . . . . 5 (𝜑𝐴𝑉)
54dfsalgen2 46339 . . . 4 (𝜑 → ((SalGen‘𝐴) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆) ∧ ∀𝑥 ∈ SAlg (( 𝑥 = 𝐴𝐴𝑥) → 𝑆𝑥))))
63, 5mpbid 232 . . 3 (𝜑 → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆) ∧ ∀𝑥 ∈ SAlg (( 𝑥 = 𝐴𝐴𝑥) → 𝑆𝑥)))
76simpld 494 . 2 (𝜑 → (𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆))
87simp2d 1143 1 (𝜑 𝑆 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914   cuni 4871  cfv 6511  SAlgcsalg 46306  SalGencsalgen 46310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-salg 46307  df-salgen 46311
This theorem is referenced by:  incsmf  46740  decsmf  46765
  Copyright terms: Public domain W3C validator