| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen2 | Structured version Visualization version GIF version | ||
| Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| unisalgen2.x | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| unisalgen2.s | ⊢ 𝑆 = (SalGen‘𝐴) |
| Ref | Expression |
|---|---|
| unisalgen2 | ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisalgen2.s | . . . . . 6 ⊢ 𝑆 = (SalGen‘𝐴) | |
| 2 | 1 | eqcomi 2738 | . . . . 5 ⊢ (SalGen‘𝐴) = 𝑆 |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (SalGen‘𝐴) = 𝑆) |
| 4 | unisalgen2.x | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 4 | dfsalgen2 46326 | . . . 4 ⊢ (𝜑 → ((SalGen‘𝐴) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆) ∧ ∀𝑥 ∈ SAlg ((∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥) → 𝑆 ⊆ 𝑥)))) |
| 6 | 3, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆) ∧ ∀𝑥 ∈ SAlg ((∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥) → 𝑆 ⊆ 𝑥))) |
| 7 | 6 | simpld 494 | . 2 ⊢ (𝜑 → (𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆)) |
| 8 | 7 | simp2d 1143 | 1 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ∪ cuni 4858 ‘cfv 6482 SAlgcsalg 46293 SalGencsalgen 46297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-salg 46294 df-salgen 46298 |
| This theorem is referenced by: incsmf 46727 decsmf 46752 |
| Copyright terms: Public domain | W3C validator |