Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen2 Structured version   Visualization version   GIF version

Theorem unisalgen2 46275
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
unisalgen2.x (𝜑𝐴𝑉)
unisalgen2.s 𝑆 = (SalGen‘𝐴)
Assertion
Ref Expression
unisalgen2 (𝜑 𝑆 = 𝐴)

Proof of Theorem unisalgen2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unisalgen2.s . . . . . 6 𝑆 = (SalGen‘𝐴)
21eqcomi 2749 . . . . 5 (SalGen‘𝐴) = 𝑆
32a1i 11 . . . 4 (𝜑 → (SalGen‘𝐴) = 𝑆)
4 unisalgen2.x . . . . 5 (𝜑𝐴𝑉)
54dfsalgen2 46262 . . . 4 (𝜑 → ((SalGen‘𝐴) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆) ∧ ∀𝑥 ∈ SAlg (( 𝑥 = 𝐴𝐴𝑥) → 𝑆𝑥))))
63, 5mpbid 232 . . 3 (𝜑 → ((𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆) ∧ ∀𝑥 ∈ SAlg (( 𝑥 = 𝐴𝐴𝑥) → 𝑆𝑥)))
76simpld 494 . 2 (𝜑 → (𝑆 ∈ SAlg ∧ 𝑆 = 𝐴𝐴𝑆))
87simp2d 1143 1 (𝜑 𝑆 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   cuni 4931  cfv 6573  SAlgcsalg 46229  SalGencsalgen 46233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-salg 46230  df-salgen 46234
This theorem is referenced by:  incsmf  46663  decsmf  46688
  Copyright terms: Public domain W3C validator