Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisalgen2 Structured version   Visualization version   GIF version

Theorem unisalgen2 45804
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
unisalgen2.x (πœ‘ β†’ 𝐴 ∈ 𝑉)
unisalgen2.s 𝑆 = (SalGenβ€˜π΄)
Assertion
Ref Expression
unisalgen2 (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ 𝐴)

Proof of Theorem unisalgen2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 unisalgen2.s . . . . . 6 𝑆 = (SalGenβ€˜π΄)
21eqcomi 2734 . . . . 5 (SalGenβ€˜π΄) = 𝑆
32a1i 11 . . . 4 (πœ‘ β†’ (SalGenβ€˜π΄) = 𝑆)
4 unisalgen2.x . . . . 5 (πœ‘ β†’ 𝐴 ∈ 𝑉)
54dfsalgen2 45791 . . . 4 (πœ‘ β†’ ((SalGenβ€˜π΄) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ βˆͺ 𝑆 = βˆͺ 𝐴 ∧ 𝐴 βŠ† 𝑆) ∧ βˆ€π‘₯ ∈ SAlg ((βˆͺ π‘₯ = βˆͺ 𝐴 ∧ 𝐴 βŠ† π‘₯) β†’ 𝑆 βŠ† π‘₯))))
63, 5mpbid 231 . . 3 (πœ‘ β†’ ((𝑆 ∈ SAlg ∧ βˆͺ 𝑆 = βˆͺ 𝐴 ∧ 𝐴 βŠ† 𝑆) ∧ βˆ€π‘₯ ∈ SAlg ((βˆͺ π‘₯ = βˆͺ 𝐴 ∧ 𝐴 βŠ† π‘₯) β†’ 𝑆 βŠ† π‘₯)))
76simpld 493 . 2 (πœ‘ β†’ (𝑆 ∈ SAlg ∧ βˆͺ 𝑆 = βˆͺ 𝐴 ∧ 𝐴 βŠ† 𝑆))
87simp2d 1140 1 (πœ‘ β†’ βˆͺ 𝑆 = βˆͺ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051   βŠ† wss 3940  βˆͺ cuni 4903  β€˜cfv 6542  SAlgcsalg 45758  SalGencsalgen 45762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-salg 45759  df-salgen 45763
This theorem is referenced by:  incsmf  46192  decsmf  46217
  Copyright terms: Public domain W3C validator