| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen2 | Structured version Visualization version GIF version | ||
| Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| unisalgen2.x | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| unisalgen2.s | ⊢ 𝑆 = (SalGen‘𝐴) |
| Ref | Expression |
|---|---|
| unisalgen2 | ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisalgen2.s | . . . . . 6 ⊢ 𝑆 = (SalGen‘𝐴) | |
| 2 | 1 | eqcomi 2740 | . . . . 5 ⊢ (SalGen‘𝐴) = 𝑆 |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (SalGen‘𝐴) = 𝑆) |
| 4 | unisalgen2.x | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 4 | dfsalgen2 46449 | . . . 4 ⊢ (𝜑 → ((SalGen‘𝐴) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆) ∧ ∀𝑥 ∈ SAlg ((∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥) → 𝑆 ⊆ 𝑥)))) |
| 6 | 3, 5 | mpbid 232 | . . 3 ⊢ (𝜑 → ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆) ∧ ∀𝑥 ∈ SAlg ((∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥) → 𝑆 ⊆ 𝑥))) |
| 7 | 6 | simpld 494 | . 2 ⊢ (𝜑 → (𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆)) |
| 8 | 7 | simp2d 1143 | 1 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ∪ cuni 4856 ‘cfv 6481 SAlgcsalg 46416 SalGencsalgen 46420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-salg 46417 df-salgen 46421 |
| This theorem is referenced by: incsmf 46850 decsmf 46875 |
| Copyright terms: Public domain | W3C validator |