![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen2 | Structured version Visualization version GIF version |
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
unisalgen2.x | β’ (π β π΄ β π) |
unisalgen2.s | β’ π = (SalGenβπ΄) |
Ref | Expression |
---|---|
unisalgen2 | β’ (π β βͺ π = βͺ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisalgen2.s | . . . . . 6 β’ π = (SalGenβπ΄) | |
2 | 1 | eqcomi 2734 | . . . . 5 β’ (SalGenβπ΄) = π |
3 | 2 | a1i 11 | . . . 4 β’ (π β (SalGenβπ΄) = π) |
4 | unisalgen2.x | . . . . 5 β’ (π β π΄ β π) | |
5 | 4 | dfsalgen2 45791 | . . . 4 β’ (π β ((SalGenβπ΄) = π β ((π β SAlg β§ βͺ π = βͺ π΄ β§ π΄ β π) β§ βπ₯ β SAlg ((βͺ π₯ = βͺ π΄ β§ π΄ β π₯) β π β π₯)))) |
6 | 3, 5 | mpbid 231 | . . 3 β’ (π β ((π β SAlg β§ βͺ π = βͺ π΄ β§ π΄ β π) β§ βπ₯ β SAlg ((βͺ π₯ = βͺ π΄ β§ π΄ β π₯) β π β π₯))) |
7 | 6 | simpld 493 | . 2 β’ (π β (π β SAlg β§ βͺ π = βͺ π΄ β§ π΄ β π)) |
8 | 7 | simp2d 1140 | 1 β’ (π β βͺ π = βͺ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3051 β wss 3940 βͺ cuni 4903 βcfv 6542 SAlgcsalg 45758 SalGencsalgen 45762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-salg 45759 df-salgen 45763 |
This theorem is referenced by: incsmf 46192 decsmf 46217 |
Copyright terms: Public domain | W3C validator |