Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen2 | Structured version Visualization version GIF version |
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
unisalgen2.x | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
unisalgen2.s | ⊢ 𝑆 = (SalGen‘𝐴) |
Ref | Expression |
---|---|
unisalgen2 | ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisalgen2.s | . . . . . 6 ⊢ 𝑆 = (SalGen‘𝐴) | |
2 | 1 | eqcomi 2747 | . . . . 5 ⊢ (SalGen‘𝐴) = 𝑆 |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (SalGen‘𝐴) = 𝑆) |
4 | unisalgen2.x | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | 4 | dfsalgen2 43770 | . . . 4 ⊢ (𝜑 → ((SalGen‘𝐴) = 𝑆 ↔ ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆) ∧ ∀𝑥 ∈ SAlg ((∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥) → 𝑆 ⊆ 𝑥)))) |
6 | 3, 5 | mpbid 231 | . . 3 ⊢ (𝜑 → ((𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆) ∧ ∀𝑥 ∈ SAlg ((∪ 𝑥 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑥) → 𝑆 ⊆ 𝑥))) |
7 | 6 | simpld 494 | . 2 ⊢ (𝜑 → (𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝐴 ∧ 𝐴 ⊆ 𝑆)) |
8 | 7 | simp2d 1141 | 1 ⊢ (𝜑 → ∪ 𝑆 = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 SAlgcsalg 43739 SalGencsalgen 43743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-salg 43740 df-salgen 43744 |
This theorem is referenced by: incsmf 44165 decsmf 44189 |
Copyright terms: Public domain | W3C validator |