![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unisalgen2 | Structured version Visualization version GIF version |
Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
unisalgen2.x | β’ (π β π΄ β π) |
unisalgen2.s | β’ π = (SalGenβπ΄) |
Ref | Expression |
---|---|
unisalgen2 | β’ (π β βͺ π = βͺ π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisalgen2.s | . . . . . 6 β’ π = (SalGenβπ΄) | |
2 | 1 | eqcomi 2741 | . . . . 5 β’ (SalGenβπ΄) = π |
3 | 2 | a1i 11 | . . . 4 β’ (π β (SalGenβπ΄) = π) |
4 | unisalgen2.x | . . . . 5 β’ (π β π΄ β π) | |
5 | 4 | dfsalgen2 45047 | . . . 4 β’ (π β ((SalGenβπ΄) = π β ((π β SAlg β§ βͺ π = βͺ π΄ β§ π΄ β π) β§ βπ₯ β SAlg ((βͺ π₯ = βͺ π΄ β§ π΄ β π₯) β π β π₯)))) |
6 | 3, 5 | mpbid 231 | . . 3 β’ (π β ((π β SAlg β§ βͺ π = βͺ π΄ β§ π΄ β π) β§ βπ₯ β SAlg ((βͺ π₯ = βͺ π΄ β§ π΄ β π₯) β π β π₯))) |
7 | 6 | simpld 495 | . 2 β’ (π β (π β SAlg β§ βͺ π = βͺ π΄ β§ π΄ β π)) |
8 | 7 | simp2d 1143 | 1 β’ (π β βͺ π = βͺ π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 β wss 3948 βͺ cuni 4908 βcfv 6543 SAlgcsalg 45014 SalGencsalgen 45018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-salg 45015 df-salgen 45019 |
This theorem is referenced by: incsmf 45448 decsmf 45473 |
Copyright terms: Public domain | W3C validator |